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Abstract. Images invaded most of contemporary publications and communications. This expansion has accelerated
with the development of efficient schemes dedicated to image compression. Nowadays, the image creation process
relies on multidimensional objects generated from computer aided design, physical simulations, data representation
or optimisation problem solutions. This variety of sources motivates the design of compression schemes adapted
to specific class of models.

The recent launch of Google Sketch’up and its 3D models warehouse has accelerated the shift from two-
dimensional images to three-dimensional ones. However, these kind of systems require fast access to eventually
huge models, which is possible only through the use of efficient compression schemes.

This work is part of a tutorial given at the XXth Brazilian Symposium on Computer Graphics and Image
Processing (Sibgrapi 2007).
Keywords: Mesh Compression. Tutorial.

Figure 1: 3D Compression: fitting 3D models into a small storage.
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1 Introduction

Images surpassed the simple function of illustrations. In
particular, artificial and digital images invaded most of pub-
lished works, from commercial identification to scientific ex-
planation, together with the specific graphics industry. Tech-
nical advances created supports, formats and transmission
protocols for these images, and these contributed to this ex-
pansion. Among these, high quality formats requiring low re-
sources appeared with the development of generic, and then
specific, compression schemes for images. More recently
drew on the sustained trend to incorporate the third dimen-
sion into images, and this motivates orienting the develop-
ments of compression towards higher dimensional images.

There exists a wide variety of images, from photographic
material to drawings and artificial pictures. Similarly, higher
dimensional models are produced from many sources: The
graphics industry designers draw three–dimensional objects
by their contouring surface, using geometric primitives. The
recent developments of radiology make intense use of three–
dimensional images of the human body, and extract isosur-
faces to represent organs and tissues. Geographic and geo-
logic models of terrain and underground consist in surfaces
in the multi–dimensional of physical measures. Engineer-
ing usually generate finite elements solid meshes in similar
multi–dimensional spaces to support physical simulations,
while reverse engineering, archæological heritage preserva-
tion and commercial marketing reconstruct real objects from
points.

Compression methods for three–dimensional models ap-
peared mainly in the mid 1990’s with [16] and developed
quickly since then. This evolution turned out to be a tech-
nical necessity, since the size and complexity of the typical
models used in practical applications increases rapidly. The
most performing practical strategies for surfaces are based
on the Edgebreaker of [57] and the valence coding of [66].
These are classified as connectivity–driven mesh compres-
sion, since the proximity of triangles guides the sequence
of the surface vertices to be encoded. More recently, dual
approaches proposed to guide the encoding of the triangle
proximity by the geometry, such as done in [20].

Actually, the diversity of images requires this multiplic-
ity of compression programs, since specific algorithms usu-
ally perform better than generic one (such as the popular Zip
method), if they are well adapted. This tutorial aims at in-
troducing the basic concepts of compression with examples
on 3D models compression for an audience without prior
knowledge in modeling or compression. The examples and
algorithms are chosen from works published in the Sibgrapi.

Preprint MAT. 13/07, communicated on August 25th, 2007 to the Depart-
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2 Information Representation
We would like first to briefly introduce what we mean by

compression, in particular the relation of the abstract tool of
information theory [53, 26, 61], the asymptotic entropy of
codes [61, 29, 67] and the practical performance of coding
algorithms [29, 56, 39, 51]. We will then focus on the arith-
metic coder [56, 51] since we will mainly use it in practise.
This coder can be enhanced by taking in account determin-
istic or statistic information of the object to encode, which
translates technically by a shift from Shannon’s entropy [61]
to Kolmogorov complexity [43]. Finally, we will describe
how this coding takes part in a compression scheme. Gen-
eral references on data compression can be found in [60].

(a) Coding

Source and codes. Coding refers to a simple translation
process that converts symbols from one set, called the source
to another, this last one being called the set of codes. The
conversion can then be applied in a reverse way, in order to
recover the original sequence of symbols, called message.
The purpose is to represent any message of the source into a
more convenient way, typically a way adapted to a specific
transmission channel. This coding can intend to reduce the
size of the message [60], for example for compression appli-
cations, or on the contrary increase its redundancy to be able
to detect transmission errors [25].

Enumeration. A simple example coder would rely on enu-
merating all the possible messages, indexing them from 1 to
n during the enumeration. The coder would then simply as-
sign one code for each message. In practise, the number of
possibilities is huge and difficult to enumerate, and it is hard
to recover the original message from its index without enu-
merating again all the possible messages. However, this can
work for specific cases [10]. These enumerative coders give
a reference for comparing performance of coders. However,
in practical cases, we would like the coding to be more effi-
cient for the most frequent messages, even if the performance
is altered for less frequent ones. This reference will thus not
be our main target.

Coder performance. Two different encodings of the same
source will in general generate two coded messages of dif-
ferent sizes. If we intend to reduce the size of the message,
we will prefer the coder that generated the smallest message.
On a specific example, this can be directly measured. More-
over, for the enumerative coder, the performance is simply
the logarithm of the number of elements, since a number n
can be represented by log pnq digits. However, this perfor-
mance is hard to measure it for all the possible messages of
a given application. [53], [26] and [61] introduced a general
tool to measure the asymptotic, theoretic performance of a
code, called the entropy.

(b) Information Theory

The corresponding work was published in Revista de Informática Teórica e Aplicada, special edition for Sibgrapi tutorials.
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Entropy. The entropy is defined in general for a ran-
dom message, which entails message generators as symbol
sources or encoders, or in particular to a specific message
(an observation) when the probabilities of its symbols are
defined. If a random message m of the code is composed of
n symbols s1 . . . sn, with probability p1 . . . pn respectively,
then its entropy h pmq is defined by h pmq � °

i

�pi log ppiq.
As referred in [61], this definition is natural for telecommu-
nication systems, but it is only one possible measure that re-
spects the following criteria:

1. h pq should be continuous in the pi.

2. If all pi are equal, pi � 1
n , then h pq should increase

with n, since there are more possible messages.

3. If the random message m be broken down into two
successive messages m1 and m2, then h pmq should
be the weighted sum of h pm1q and h pm2q.

Huffman coder. [29] introduced a simple and effi-
cient coder that writes each symbol of the source with
a code of variable size. For example, consider that a
digital image is represented by a sequence of colours
sblack, sred, sdarkblue, slightblue, swhite. A simple coder will
assign a symbol to each colour, and encode the image as the
sequence of colours. This kind of coder will be called next
an order 0 coder.
If the image is a photo of a seascape, as the one of Figure 2,

Figure 2: Huffman coding relies on the frequency of symbols of a
message, here the colours inside an image.

the probability to have blue colours in the message will be
higher than for red colours. Huffman proposed a simple
way to encode with less bits the more frequent colours, here
blue ones, and with more bits the less frequent symbols.
Consider that each of the colour probabilities is a power of
2: pblack � 2�3, pred � 2�4, pdarkblue � 2�1, plightblue �
2�2, pwhite � 2�4.
These probabilities can be represented by a binary tree, such
as each symbol of probability 2�b is a leaf of depth b in the
binary tree. Then each symbol is encoded by the left (0)
and right (1) choices to get from the root of the tree to that
symbol. The decoding is then performed by following the
left and right codes until reaching a leaf, and the symbol

of that leaf is a new element of the decoded message. In
that context, the probability of each left and right operation
is 1

2 , which maximises the entropy (h pmq � 1), i.e., the
theoretical performance.

Entropy coder. The original Huffman code also worked
out for general probabilities, but without maximising the en-
tropy. It uses a greedy algorithm to choose how to round off
the probabilities towards powers of 2 [29]. However, Shan-
non proved that it is asymptotically possible to find a coder of
maximum entropy [61], and that no other coder can asymp-
totically work better in general. This is the main theoretical
justification for the definition of h pq. [29] introduced a sim-
pler proof of that theorem, by grouping sequence of symbols
until their probability become small enough to be well ap-
proximated by a power of 2.

(c) Levels of Information

In practise, although the entropy of a given coder can be
computed, the theoretical entropy of a source is very hard to
seize. The symbols of the source are generally not indepen-
dent, since they represent global information. In the case of
dependent symbols, the entropy would be better computed
through the Kolmogorov complexity [43]. For example, by
increasing the contrast of an image, as human we believe
that we loose some of its details, but from the information
theory point of view, we added a (mostly) random value to
the colours, therefore increasing the information of the im-
age.

An explanation for that phenomenon is that the represen-
tation of an image as a sequence of colours is not significant
to us. This sequence could be shuffled in a deterministic way,
it would not change the coding, but we would not recognise
anymore the information of the image. In order to design and
evaluate an efficient coding system, we need to represent the
exact amount of information that is needed for our appli-
cation, through an independent set of codes. If we achieve
such a coding, then its entropy can be maximised through a
universal coder, such as the Huffman coder or the arithmetic
coder.

Preprint MAT. 13/07, communicated on August 25th, 2007 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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3 Arithmetic Coding
The arithmetic coding [56, 51] encodes the symbols

source with code sizes very close to their probabilities. In
particular, it achieves an average size of codes that can be a
fraction of bits. Moreover, it can encode simultaneously dif-
ferent sources, and provide a flexible way of adapting proba-
bilities of the source symbols. This adaptation can be moni-
tored through rules depending on a context, or automatically
looking at the previous encoded symbols by varying the or-
der of the coder. This section details these points, and pro-
vides some sample code inspired from [5]. In particular, we
would like to detail why the arithmetic coder is usually pre-
sented as a universal solution, and how much parameters are
hidden behind this universal behaviour. This coder is widely
used, and we will detail for each algorithm the hidden pa-
rameters which have a significant impact on the final com-
pression ratio.

(a) Arithmetic Coder

Instead of assigning a code for each of the source symbol,
an arithmetic coder represent the whole message by a single
binary number m P r0, 1r, with a large number of digits.
Where Huffman decoder read a sequence of left/right codes
to rebuild the source message, the arithmetic coder will
read a sequence of interval shrinking, until finding a small
enough interval containing m. At each step, the interval is
not shrunk by splitting it in two as in Huffman coding, but
each possible symbol of the source is assigned a part of the
interval proportional to its probability, and the interval is
shrunk to the part of the source symbol. Therefore, a splitting
in two corresponds in general to several shrinking, and thus a
single bit can encode many symbols, as the next table details
on the beginning of the example of Figure 2, using the above
probabilities.

Example. We will first illustrate the arithmetic coding with
our previous example of Figure 2, reduced to Figure 3:
compressing an image by directly encoding its colours:
sblack, sred, sdarkblue, slightblue, swhite. In order to simplify
the writing, we will consider that the probabilities of the
colours are decimals, but this does not make any difference.
Each probability is assigned an distinct interval of r0, 1r :

symbol probability r interval r
sblack 0.1 r 0 , 0.1 r
sred 0.1 r 0.1 , 0.2 r

sdarkblue 0.4 r 0.2 , 0.6 r
slightblue 0.3 r 0.6 , 0.9 r
swhite 0.1 r 0.9 , 1 r

Then, the image to be encoded is the sequence of Figure 3 :

sred slightblue sdarkblue slightblue slightblue slightblue

sblack slightblue slightblue sdarkblue slightblue sdarkblue

sdarkblue sblack sblack slightblue sdarkblue sdarkblue

sblack sblack slightblue sdarkblue sdarkblue sdarkblue

Figure 3: Reduced image extracted of Figure 2.

This sequence will be encoded by progressively shrinking
the original interval. The final message is the lower bound of
the last interval.

symbol r proba r ��Ij
�� interval Ij�1 � inf Ij � ��Ij

�� � proba

r , r 1 r 0 ,1 r
sred r 0.1 ,0.2 r 0.1 r 0.1 ,0.2 r

slightblue r 0.6 ,0.9 r 0.03 r 0.16 ,0.19 r
sdarkblue r 0.2 ,0.6 r 0.012 r 0.166 ,0.178 r
slightblue r 0.6 ,0.9 r 0.0036 r 0.1732 ,0.1768 r
slightblue r 0.6 ,0.9 r 0.00108 r 0.17536 ,0.17644 r
slightblue r 0.6 ,0.9 r 0.000324 r 0.176008 ,0.176332 r
sblack r 0 ,0.1 r 3.24 10�05 r 0.176008 ,0.1760404 r

slightblue r 0.6 ,0.9 r 9.72 10�06 r 0.17602744 ,0.17603716 r
slightblue r 0.6 ,0.9 r 2.92 10�06 r 0.176033272 ,0.176036188 r
sdarkblue r 0.2 ,0.6 r 1.17 10�06 r 0.1760338552 ,0.1760350216 r
slightblue r 0.6 ,0.9 r 3.50 10�07 r 0.17603455504 ,0.17603490496 r
sdarkblue r 0.2 ,0.6 r 1.40 10�07 r 0.176034625024 ,0.176034764992 r

(b) Algorithms

Decoding algorithm. The decoding procedure is easy to
understand once the message m P r0, 1r has been completely
read. In practise, it is progressively decoded since it is too
long to be conveniently represented by a single number
in memory, which introduces some extra work referred to
as renormalisation. First, the probability pj

i of the source
symbols must be known at each step j of the decoding
procedure. The initial interval is set to I0 � r0, 1r. Then,
at each step j, the interval Ij�1 is subdivided into parts
proportional to the symbol probabilities pj

i into subintervals
sIj

i as follows :

sIj
1 � [ 0 , pj

1 [
sIj

2 � [ pj
1 , pj

1 � pj
2 [

sIj
3 � [ pj

1 � pj
2 , pj

1 � pj
2 � pj

3 [� � �
sIj

n�1 � [ 1� pj
n � pj

n�1 , 1� pj
n [

sIj
n � [ 1� pj

n , 1 [

Then, the message m belongs to one of the subintervals
sIj

i , corresponding to symbol si. This symbol si is added
to the decoded message, and the next interval is set to sIj

i :
Ij � sIj

i .

The corresponding work was published in Revista de Informática Teórica e Aplicada, special edition for Sibgrapi tutorials.



5 3D compression: from A to Zip

Algorithm 1 aritdecode(in,out) : decodes stream in to out

1: I Ð r0, 1r // initial interval
2: in

�32ÝÝÑm // reads the first bits of the input
3: repeat
4: ppiqiPv1,nw Ð get model pq // retrieves the probabilities
5: count Ð p1 // upper bound of sIj

i

6: for i P v2, nw do // look the interval containing m
7: if m   count then // found the subinterval
8: break // exits the for loop
9: count Ð count� pi // next i

10: sÐ si ; out
�sÐÝÝ si // decoded symbol si

11: I Ð rcount� pi�1, countr // updates the current interval
12: while 1

2
R I or |I|   1

2
do // renormalisation

13: if I � �
1
2
, 1
�

then // higher half
14: I Ð I � 1

2
; mÐm� 1

2
// shifts higher half to

lower half
15: else if I � �

1
4
, 3

4

�
then // central half

16: I Ð I � 1
4

; mÐm� 1
4

// shifts central half to
lower half

17: I Ð 2 � I // lower half is directly renormalised
18: mÐ 2 �m ; in

�1ÝÝÑm // message is shifted by reading
in

19:
20: until s � stop // read a stop symbol

Renormalisation. Observe that unless the decoder does
not stop on its own, as for Huffman coding. The source must
have a stop symbol or the decompression must know how
to stop the decoder. For large messages, the intervals Ij re-
quire more memory to be represented than the usual 2 � 64
bits offered by computers. Therefore, when an interval Ij is
contained in

�
0, 1

2

�
or

�
1
2 , 1

�
, one bit of the message is trans-

mitted, the interval is shifted (scaled by two), and the algo-
rithm goes on. Moreover, the intervals Ij can get arbitrarily
small around 1

2 . In order to prevent this, when Ij � �
1
4 , 3

4

�
,

two bits of the message are transmitted, the interval is shifted
twice (scaled by four). These processes are called renormal-
isation. In parallel, the message does not need to be read en-
tirely, since the only precision needed to decode one symbol
is given by the intervals Ij . At each renormalisation, a com-
plement of the message is read to ensure that the precision
of the interval matches the precision of the message. This
whole process is implemented by Algorithm 1: aritdecode.

Encoding algorithm. The encoding procedure is
very similar to the decoding one, as details on Algo-
rithm 2: aritencode. Note that in both cases, the finite
precision of computer representations forces to use only
half of the available bits to represent the probabilities and
the intervals, since both have to be multiplied with exact
precision. Also, the open intervals are actually represented
by closed ones: rni, nsr � rni, ns�1r.
(c) Statistical Modelling

This arithmetic coder provides a powerful engine to en-
code a universal source. However, it is very sensible to the

Algorithm 2 aritencode(in,out) : encodes stream in to out

1: I Ð r0, 1r // initial interval
2: repeat
3: ppiqiPv1,nw Ð get model pq // retrieves the probabilities

4: in
�sÝÝÑ si // retrieves symbol to encode

5: I Ð �°
kPv1,i�1w pk,

°
kPv1,iw pk

�
// deduce the current

interval
6: while 1

2
R I or |I|   1

2
do // renormalisation

7: if I � �
0, 1

2

�
then // lower half

8: out
�1ÐÝÝ 0 // appends a 0 to the coded message

9: else if I � �
1
2
, 1
�

then // higher half

10: out
�1ÐÝÝ 1 // appends a 1 to the coded message

11: I Ð I � 1
2

// shifts higher half to lower half
12: else if I � �

1
4
, 3

4

�
then // central half

13: out.repeat next bit // set out to repeat the next bit to
be output

14: I Ð I � 1
4

// shifts central half to lower half
15: I Ð 2 � I // scaling
16: until s � stop // read a stop symbol

tuning, which is a very hard task. First, the probability model
is very important. Consider a zero–entropy message, i.e. a
message with a constant symbol s0. If the probability model
states that s0 has probability p0 ! 1, then the encoded stream
will have a huge length. Therefore, the arithmetic coder is not
close to an entropy coder, unless very well tuned. We will see
some generic techniques to improve these aspects.

Adaptive models. A simple solution to the adaptability of
the probabilities consists in updating the probability model
along the encoding, in a deterministic way. For example, the
probability of a symbol can increase each time it is encoded,
or the probability of a stop symbol can increase at each new
symbol encoded, as on the table below. This can be eas-
ily implemented through the function get modelpq of Al-
gorithm 1: aritdecode and Algorithm 2: aritencode. For the
case of the zero–entropy stream, there would be a reason-
able amount of encoded stream where p0 goes closer to 1,
and then the stream will be encoded at a better rate. Observe
that p0 cannot reach one, since the probability of each sym-
bol must not vanish, prohibiting an asymptotic zero–length,
but respecting the second item of the requirements for the
entropy of section 2(b) Information Theory.

Preprint MAT. 13/07, communicated on August 25th, 2007 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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symbol updated probabilites r ps r ��Ij
��

0
10

1
10

2
10

6
10

9
10

10
10

r , r 1

sred
0
11

1
11

3
11

7
11

10
11

11
11

r 1
10

, 2
10
r 0.1

slightblue
0
12

1
12

3
12

7
12

11
12

12
12

r 7
11

, 10
11
r 0.027272

sdarkblue
0
13

1
13

3
13

8
13

12
13

13
13

r 3
12

, 7
12
r 0.009090

slightblue
0
14

1
14

3
14

8
14

13
14

14
14

r 8
13

, 12
13
r 0.002797

slightblue
0
15

1
15

3
15

8
15

14
15

15
15

r 8
14

, 13
14
r 0.000999

slightblue
0
16

1
16

3
16

8
16

15
16

16
16

r 8
15

, 14
15
r 0.000400

sblack
0
17

2
17

4
17

9
17

16
17

17
17

r 0
16

, 1
16
r 2.49 10�5

slightblue
0
18

2
18

4
18

9
18

17
18

18
18

r 9
17

, 16
17
r 1.02 10�5

slightblue
0
19

2
19

4
19

9
19

18
19

19
19

r 9
18

, 17
18
r 4.57 10�6

sdarkblue
0
20

2
20

4
20

10
20

19
20

20
20

r 4
19

, 9
19
r 1.20 10�6

slightblue
0
21

2
21

4
21

10
21

20
21

21
21

r 10
20

, 19
20
r 5.41 10�7

sdarkblue
0
22

2
22

4
22

11
22

21
22

22
22

r 4
21

, 10
21
r 1.54 10�7

sdarkblue
0
23

2
23

4
23

12
23

22
23

23
23

r 4
22

, 11
22
r 4.92 10�8

sblack
0
24

3
24

5
24

13
24

23
24

24
24

r 0
23

, 2
23
r 4.27 10�9

sblack
0
25

4
25

6
25

14
25

24
25

25
25

r 0
24

, 3
24
r 0.53 10�9

Order. This probability model can be enhanced by consid-
ering groups of symbols instead of only one. The number of
symbols considered jointly is called the order of the coder.
This is particularly useful for text, where syllables play an
important role. An order 0 coder means that the probability
model is updated continuously, whereas an order k model
will use a different probability model for each combination
of the k symbols preceding the encoded one.

Contexts. With this point of view, the arithmetic coder be-
gins with one probability model, and updates it continuously
along the encoding process. However, we can actually con-
sider various probability models simultaneously, depending
on the context of the symbol to encode. For example when
coding a text, it is more probable to find a vowel after a con-
sonant. Therefore, the probability of a vowel after another
vowel could be reduced to improve the probability model.

Limits. Context modelling and order–based coding allows
reducing the interdependence of the symbols (putting the en-
tropy closer to the Kolmogorov complexity [43]). This pro-
cess is the main part of describing the object to encode, but
since it is a difficult one, these features can lead to significant
improvements of the results. However, the number of con-
texts and the order must be limited, since for each context
the coder builds a probability model through the regular up-
dates, and an exponential number for each order added. This
probability needs a reasonable amount of encoded stream to
get closer to the real probability model. The encoded stream
must be longer than this amount of time for each context.

Prediction. Another way to reduce the covariance relies on
prediction mechanisms, i.e. deductions that can be equally
obtained from the encoder and the decoder. Since we en-
code the lower part of the interval containing the message,
a message ended by a sequence of 0 is cheaper to encode

than a message ended with a 1, as on the example of sec-
tion 3(a) Arithmetic Coder. Therefore, if the prediction always
asserts the results, the message will be a sequence of 0s,
with some isolated 1s. This is actually encoded by an arith-
metic coder as a run–length encoded stream, since the stop
characters induce a very tiny last interval. If the stop can be
predicted too, then the arithmetic coding spares the last se-
quence of 0s. In this rough point of view, the better case of
arithmetic coding is, for a generic problem, the logarithm of
the number of symbols.

4 Compression
Coding is only a part of a compression scheme. Actu-

ally, a compression scheme is composed of various steps of
conversions, from the original data to a symbolic represen-
tation, from this representation to specifications of sources,
from these sources to the encoded message, from this en-
coded message to a transmission protocol, which entails a
re–coding for error detection, and the symmetric parts from
the receiver.

This whole process can be designed part by part, or all to-
gether. For example, some nice compression scheme already
contains error detection using the redundancy of the origi-
nal data that is left after the encoding. Some lossy or pro-
gressive compression schemes perform the encoding directly
from the representation and incorporate the specification of
sources.

These features optimise compression for specific applica-
tions. However, a generic application usually requires a sep-
arate design of the parts of a compression scheme. In this
context, arithmetic coding turns out to be a very flexible tool
to work on the final compression ratio, i.e. the ratio of the
final size and the original size of the data. Depending on the
application, this compression ratio must be reduced to opti-
mize specific characteristics of these applications, leading to
different trade–offs. We will now detail three such generic
trade–offs.

(a) Compaction

Compaction refers to compact data structures, also called
succinct. These structures aim at reducing the size of the
memory used during the execution of an application, while
maintaining a small execution overhead. This trade–off be-
tween memory used and execution time must also allow
a random access to the compact data structure. For exam-
ple for mesh data structures, this trade–off can be simply a
elegant data representation with no specific encoding such
as [59, 36, 37]. It can also involve simple encoding scheme
that are fast to interpret as [28], or involve a precise mixture
of very efficient encoding with a higher–level data structure,
such as [11, 12].

(b) Direct Compression

The most used meaning of compression refers to file
compression or to compression of exchanged information.
Most of the common generic algorithms are based on the

The corresponding work was published in Revista de Informática Teórica e Aplicada, special edition for Sibgrapi tutorials.
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LZH (ZIP) algorithm of [39], aside from specific image and
video compression algorithms such as JPEG [70, 13] and
MPEG [19, 54]. In this case, the goal is to optimise the
trade–off between compression rate and compression time:
the enumeration method is usually too slow, while a simple
coding of the data representation can be in general improved
with a minor time overhead. The trade–off can also take into
account the amount of memory necessary to compress or
decompress the stream. In that case, the process is usually
performed out–of–core, such as [32].

(c) Progressive Compression

The compression can also lead to a loss of information
when decompressing. This can be useful either when the
lost part is not significant, or when it can be recovered by
a further step of the compression. In that second sense, lossy
compression will generate objects at various levels of detail,
i.e. in multiresolution. Each resolution can be compressed
separately by the difference from the previous one. A variant
of that scheme does not distinguish between levels of details,
sending a coarse level by direct compression, and refining it
by a sequence of local changes. In these contexts, the goal is
to optimise the trade–off between compression ratio and the
distortion of the decompressed model. For the geometrical
models, the distortion is usually measured by the geometric
distance between the decoded model and the original one.

5 Meshes and Geometry
Geometrical objects are usually represented through

meshes. Especially for surfaces in the space, triangulations
had the advantage for rendering of representing with a single
element (a triangle) many pixels on screen, which reduced
the number of elements to store. Although the increasing size
of usual meshes reduced this advantage, graphic hardware
and algorithms are optimised for these representations and
meshes are still predominant over point sets models. More-
over, several parts of the alternative to meshes require lo-
cal mesh generation, which becomes very costly in higher
dimensions. Finally, meshes describe in a unique and ex-
plicit manner the support of the geometrical object, either
by piecewise interpolation or by local parameterisation such
as splines or NURBS.

To a real object correspond several meshes. These meshes
represent the same geometry and topology, and thus differ by
their connectivity. The way these objects are discretised usu-
ally depends on the application, varying from visualisation
to animation and finite element methods. These variations
make it harder to define the geometric quality of a mesh inde-
pendently of the application, even with a common definition
for the connectivity.

There is no need for a specific data structure for meshes.
We will consider only the operations described in this
section as the basic elements of a generic data structure.
For further readings, the classical data structures for sur-
faces are the winged–edge [8], the split–edge [17],
the quad–edge [22], the half–edge [49] and the

corner–table [59, 37]. For non–manifold 2–meshes,
we would mention the radial–edge [71] and [18]. Fur-
ther references on the following definitions can be found
in [52, 9, 27].

(a) Simplicial Complexes and Polytopes

There are various kind of meshes used in Computer
Graphics, Scientific Visualisation, Geometric Modelling and
Geometry Processing. However, the graphic hardware is op-
timised for processing triangles, line segments and points,
which are all special cases of simplices. We will therefore
focus mainly on meshes made of simplices, called simplicial
complex, and one of its extensions to meshes made of convex
elements, which we will refer as polytopes. This notion can
be further extended to cell complexes [27], but these are only
used for high–level modelling and we will not use them in
this tutorial.

Simplicial Complexes

Simplex. A simplex is an n–dimensional analogue of a
triangle. More precisely, a simplex σn of dimension n, or
n–simplex for short, is the open convex hull of n� 1 pointstv0, . . . , vnu in general position in some Euclidean space Rd

of dimension n or higher, i.e., such that no m–plane contains
more than pm� 1q points. The closed simplex σ̄n is the
closed convex hull of tv0, . . . , vnu. The points vi are called
the vertices of σn. For example, a 0–simplex is a point, a

Figure 4: Simplices from dimension 0 to 3.

1–simplex is a line segment, a 2–simplex is a triangle, a 3–
simplex is a tetrahedron, and a 4–simplex is a pentachoron,
as shown on Figure 4.

Incidence. The open convex hull of any m   n vertices of
σn is also a simplex τm, called an m–face of σn. We will
say that σn is incident to τm, and denote σn ¡ τm. The
0—faces are called the vertices, and the 1–faces are called
the edges. The frontier of a simplex σ, denoted by Bσ, is the
collection of all of its faces.

Complex. A simplicial complex K of Rd is a coherent
collection of simplices of Rd, where coherent means that K
contains all the faces of each simplex (@σ P K, Bσ � K),
and contains also the geometrical intersection of the closure
of any two simplices (@ pσ1, σ2q P K2, σ̄1 X σ̄2 � K), as
illustrated on Figure 5. Two simplices incident to a common
simplex are said to be adjacent. The geometry of a complex
usually refers to the coordinates of its vertices, while its
connectivity refers to the incidence of higher–dimensional
simplices on these vertices.
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(a) Simplicial complex. (b) Non–complex.

Figure 5: Simplicial complex and a set of simplices not being a
complex.

Skeleton. If a collection K 1 of simplices of K is a simpli-
cial complex, then it is called a subcomplex of K. The sub-
complex Kpmq of all the p–simplices, p ¤ m, is called the
m–skeleton of K.

Connected components. A complex is connected if it can-
not be represented as a union of two non–empty disjoint sub-
complexes. A component of a complex K is a maximal con-
nected subcomplex of K.

Local Structure

Consider a simplex σ of a complex K. The local neigh-
bourhood of σ is described by its star [1].

(a) The star of a vertex is
the union of the open star
(in red) with the ling (in
blue).

(b) The star of an edge.

Figure 6: Vertex star in a 2–complex and edge star in a 3–complex.

Link. The join σ � τ of two disjoint simplices σ and τ is
the simplex that is the open convex hull of σ Y τ . The link
of a simplex σ P K is the set of simplices whose join with σ
belongs to K: lk pσq � tτ P K : σ̄ X τ̄ � H, σ � τ P Ku.
Star. The open star of σ is then the join of σ with its link:
9st pσq � tσ � τ, τ P lk pσqu. Finally, the star of σ is the

union of all the simplices of the open star together with all
their faces: st pσq � 9st pσq Y �

ρP 9stpσq Bρ. The valence of a
vertex is the number of maximal faces in its star.

Pure Simplicial Complexes

Dimension. The dimension n of a simplicial complex K is
the maximal dimension of its simplices, and we will say that
K is an n–complex. A maximal face of a simplicial complex
of dimension n is an n–simplex of K.

Euler–Poincar characteristic. Denoting #m pKq the
number of m–simplices in K, the Euler–Poincar char-
acteristic χ pKnq of an n–complex Kn is a topological
invariant [27] defined by χ pKnq � °

mPN
p�1qm#m pKnq.

Pure complexes. Roughly speaking, a complex is pure if
all the visible simplices have the same dimension. More
precisely, a simplicial complex Kn of dimension n is pure
when each p–simplex of K, p   n, is face of another simplex
of K.

Boundary. The boundary BK of a pure simplicial complex
Kn is the closure of the set, eventually empty, of its (n�1)–
simplices that are face of only one n–simplex: BKn � 
σn�1 : # lk

�
σn�1� � 1

(
. The simplices of the boundary of

K and their faces are called boundary simplices, and the
other simplices are called interior simplices.

Simplicial Manifolds

Figure 7: A surface with two
bounding curves

Figure 8: A non–pure 2–
complex with a non–manifold
vertex.

Manifolds. A simplicial n–manifold Mn is a pure simpli-
cial complex of dimension n where the open star of each in-
terior vertex is homeomorphic to an open n–ball Bn and the
open star of each bounding vertex is homeomorphic to the
intersection of Bn with an closed half–space. This implies
that each (n�1)–simplex of M is the face of either one or
two simplices. In particular, the boundary of an n–manifold
is a (n�1)–manifold with an empty boundary.

Orientability. An orientation on a simplex is an orderingpv0, . . . , vnq on its vertices. Two orientations are equivalent
if they differ by an even permutation. There are therefore two
opposite orientations on a simplex. A simplicial manifold
Mn is orientable when it is possible to choose a coherent
orientation on all its simplices. More precisely, if σn�1 �pv1, . . . , vnq is an oriented interior (n�1)–simplex of Mn,
face of ρ � σn�1 � v and ρ1 � σn�1 � v1, then the orientation
of ρ and ρ1 is coherent the orientation of ρ is equivalent
to pv, v1, . . . , vnq and the orientation of ρ1 is opposed topv1, v1, . . . , vnq. This orientation thus defines the notion of
next and previous vertex inside a triangle of a simplex.

Surfaces. For example, a 2–manifold is a surface, i.e. a
simplicial complex made of only vertices, edges and trian-
gles where each edge is in the frontier of either one or two tri-
angles and where the boundary does not pinch. For example,

The corresponding work was published in Revista de Informática Teórica e Aplicada, special edition for Sibgrapi tutorials.



9 3D compression: from A to Zip

Figure 7 shows an example of 2–manifold and Figure 8 illus-
trates a 2–complex that is neither pure nor a manifold. The
topology of surfaces can be easily defined from its orientabil-
ity and its Euler–Poincar characteristic, using the Surface
classification theorem [6]: Any oriented connected surface
S is homeomorphic to either the sphere S2 (g pSq � 0) or a
connected sum of g pSq ¡ 0 tori, in both cases with some fi-
nite number b pSq of open disks removed. The number g pSq
is called the genus of S , and b pSq its number of bound-
aries. The Euler–Poincar characteristic χ pSq of S is equal to
χ pSq � #2 pSq�#1 pSq�#0 pSq � 2� 2 � g pSq� b pSq.

Polytopes

Surfaces in finite element methods are usually represented
by a mixture of triangular and quadrangular elements. Al-
though this do not directly fits to the simplicial complexes
we just introduced, this structure can be easily extended to
that case. For example, one could divide each quadrangle
into two coplanar triangles and get a simplicial complex. We
define a polytope in a similar way.

Along this tutorial, a polytope in Rd will be a coherent
collection of convex open set of Rd, called cells, where co-
herent means again that the collection contains the frontiers
and the intersections of its cells. Observe that this implies
that each cell is made up with piecewise linear elements,
from edges to its maximal faces.

The definition and properties described above are still
valid, in particular the notion of boundary, manifold, ori-
entability, and the classification for 2–dimensional manifold
polytopes. Moreover, polytopes are useful to define the dual
of a manifold: The dual of an n–manifold Md is the man-
ifold polytope obtained by reversing the incidence relations
of its cells, i.e. creating a vertex for each n–cell of Md, and
an m–cell for each (n�m)–cell ofMd, spanning the vertices
created for each n–cell of its star in Md.

6 Combinatorial Operators
The encoding of meshes describes, in a compact way,

how to build the encoded mesh. The decoding operation thus
performs a sequence of combinatorial operations on an ini-
tial empty or canonically defined mesh together with a re-
construction of its geometry. These combinatorial operations
are of two kinds: purely constructive ones and their inverse,
namely the Euler and Handle operators, which only increase
the number of simplices (or cells) without modifying exist-
ing ones; and subdivision ones with their inverse, and Stellar
operators is a complete set for this category. The Handle op-
erators are sometimes considered as a special case of Euler
operators, since these operations are similar but they alter the
topology of the mesh.

We will now describe each of these operators, first be-
cause it is a complete set of operators for mesh, and sec-
ond because the Edgebreaker algorithm [57] of section
7 Connectivity–Driven Compression uses the specificities of
Handle operators together with Euler operators.

Figure 9: 3 ways of attaching a simplex to a triangulation. Centre:
MSG, Down: MTE, Up: MEV�MTE.

(a) Euler Operators

Generic Euler operators for surfaces. Euler operators
were originally defined as operators on surfaces that do not
change its manifoldness nor its Euler characteristic [49]. In
this restricted definition, there was 5 creation and 5 destruc-
tion operators, some illustrated on Figure 9, namely:

M/K EV adds/removes an edge and a vertex
M/K TE adds/removes a triangle and an edge

M/K STV adds/removes an initial triangle, without edge
M/K SG closes/opens a bounding curve

M/K EKL adds/removes an edge, joining two bounding curves
We will now extend these definitions, in order to first distin-
guish between topology–preserving operators (M/K EV and
M/K TE) and Handle operators that will be introduced next,
and second to extend these definitions to any dimension. All
the definitions of this section also apply to polytopes.

Low–level Euler operators. With this distinction, basic
Euler operators are reduced to simplicial collapse and sim-
plicial expansion [27]. Given a simplicial complex K and
σm a simplex of K face of only one (m�1)–simplex ρm�1,
we say that K collapses to K 1 � Kz  σm, ρm�1

(
, and that

K 1 expands to K. Observe that since we add or remove pairs
of simplices of consecutive dimensions, we do not change
the Euler characteristic of K. For m � 0, the expansion cor-
responds to MEV, and the collapse to KEV. For m � 1, the
expansion corresponds to MTE, and the collapse to KTE.

Euler attachment. The simplicial expansion operator
works at low–level, and in particular for pure complexes or
manifolds, these operators must be used in group to preserve
the purity of the mesh as on the top of Figure 9. The simplex
attachment operations compose the minimal group of Euler
operators that add a unique maximal face, preserving the
purity. For 1–complexes, a simplex attachment of order 1 is
a MEV operation. For 2–complexes, a simplex attachment
of order 2 is a MTE operation, eventually preceded by a sim-
plex attachment of order 1. In general, a simplex attachment
for n–complexes can be described as a simplicial expansion
with m � n�1, eventually preceded of at most n�1 simplex
attachments of order n�1.
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Manifold Euler operators. The simplicial expansion pre-
serves the topology of the mesh (actually this define its sim-
ple homotopy type), and combined into simplex attachment
operations, it preserves the purity of the mesh. In order to
preserve the manifoldness of the mesh, we need to restrict the
simplex attachment operations. From the property of mani-
folds, that each (n�1)–simplex is the face of either one or two
simplices, we need to restrict these simplex attachment to the
boundary of the manifold. Since Euler attachments preserve
the topology of the mesh, this is actually sufficient: the man-
ifold Euler operators are attachments involving only bound-
ing simplices.

(b) Handle Operators

Generic attachment. We distinguished inside the generic
Euler operators for surfaces between those who preserve and
those who change the topology of the simplicial complex.
The Euler attachment resulted in adding a maximal face us-
ing only low–level Euler operators, and thus preserving the
topology. The generalization of this notion, the generic at-
tachment, also adds a simplex and its faces, with the only
restriction of preserving the properties of a simplicial com-
plex. More precisely, an m–simplex σm can be attached to
an n–complex Kn by identifying some of the faces of σm

with some of the simplices of K. In order to preserve the
simplicial complex property, we impose that if a face τ of
σm is identified with a simplex τ 1 of Kn, then the faces of τ
are identified with the faces of τ 1 in a one–to–one correspon-
dence.
Such operation can alter the topology of the complex, and
its manifoldness. In particular, observe that the first step of a
mesh construction, i.e. creating the first simplex, is a generic
attachment onto an empty complex.

Manifold Handle operators. In order to preserve the man-
ifoldness, we must first restrict the attachment to a maxi-
mal face, and identify part of its frontier with the bound-
ary of the manifold, as we did previously. However, this is
not enough, since a generic attachment can create a pinch on
the manifold. A sequence of Euler attachments can then fat-
ten this pinch in order and thus recover the manifoldness.
Therefore, we will define a Handle operator on Mn as a
generic attachment involving only the boundary of Mn of
an n–simplex followed by at most n�1 Euler attachments
of n–simplices. This operation is also referred as Handle at-
tachment [45, 46].

ÝÝÝÝÝÑ

Figure 10: χ� 0: Euler attachment.

Handle operators for surfaces. These manifold Handle
operators can be exhaustively described, and especially for
curves and orientable manifold, they characterise exactly the
topological change they induce. For 1–complexes, there are

ÝÝÝÝÝÑ

Figure 11: b� 1, χ� 1: lower 1–handle operator.

ÝÝÝÝÝÑ

Figure 12: g� 1, b� 1, χ� 1: upper 1–handle operator.

four constructive operators: creating a first vertex (generic
attachment), adding an edge and a vertex (MEV), adding
an edge between two vertices of a boundary (Handle op-
erator) and adding an edge between an interior vertex and
another vertex (Non–manifold generic attachment). For sur-
faces, there are seven surface constructive operations, with
their inverse, destructive operators [45, 46]:

χ� 1 creates a new connected component with initial trian-
gle, with its three edges and vertices (Handle operator:
0–handle)

χ� 0 completes two consecutive bounding edges with a tri-
angle (MTE, Figure 9)

χ� 0 glues a triangle on a bounding edge (Euler attachment,
Figure 10)

χ� 1 glues two bounding edges of distinct connected com-
ponents (Handle operator: 1–handle)

b� 1 glues two non–consecutive edges of the same bound-
ing curve with two triangles, splitting this curve
into two bounding curves (Handle operator: lower 1–
handle, Figure 11)

g� 1, b� 1 glues two edges of different bounding curves with two
triangles, creating a genus (Handle operator: upper 1–
handle, Figure 12)

b� 1 closes a three–edges bounding curves with a triangle
(Handle operator: 2–handle, Figure 13)

7 Connectivity–Driven Compression
Since there is still no strong relation between the geome-

try and the connectivity of these meshes for the usual objects
considered by graphics applications, dedicated compression
schemes consider either that the common information can be
deduced from either the connectivity or the geometry. The
first option assumes that the star of a simplex has a simple ge-
ometry, which can be well approximated by simple methods
such as linear interpolation. Then, the geometry can be effi-
ciently encoded by a connectivity traversal of the mesh, lead-
ing to connectivity–driven compression schemes. The sec-
ond option predicts the connectivity from the geometry, and
will be referred as geometry–driven compression schemes.
In that case, the connectivity is usually better compressed,
but it needs efficient geometry coding.

The corresponding work was published in Revista de Informática Teórica e Aplicada, special edition for Sibgrapi tutorials.
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ÝÝÝÝÝÑ

Figure 13: b� 1, χ� 1: 2–handle operator.

In this section, we will focus on the connectivity part
of the compression. These connectivity–driven methods im-
proved so much in the last decade that the compression ra-
tio for usual surface connectivity turns around 2/3 bits per
vertex. We will give a general framework for handling the
critical elements of the connectivity: the topological singu-
larities. These singularities are well understood for surfaces
through the Handle operators of section 6(b) Handle Opera-
tors. We will then focus on the Edgebreaker scheme, and
introduce two new improvements: the handling of bound-
ary, as a consequence of this framework for singularities,
and a small improvement of the decompression algorithm.
We will conclude this section with compression ratios of the
Edgebreaker on usual models with recent improvements,
and we will detail the specificities of connectivity–driven
compression scheme. The goal of this section is to state what
connectivity–driven compression means, with the detailed
example of the Edgebreaker (Figure 14 and Figure 15), and
to show where these algorithms are well suited.

(a) Principles

Connectivity–driven compression schemes rely on a
traversal of the mesh in order to visit each vertex, and to
identify it on further visits. This way, the geometry of the ver-
tex needs to be transmitted only once, and the traversal en-
codes the connectivity of the mesh. This general framework
suits particularly well for manifold polytopes. Most of the
existing compression techniques are dedicated to surfaces,
and we will focus on these algorithms. Further extensions to
non–manifold cases are described in [21], while simple ex-
tensions of the most common schemes exist for solid models
in [63, 31].

Connectivity–driven compression begun with cache prob-
lems in graphic cards: the rough way of transmitting triangle
meshes from the main memory to the graphic card is (still)
to send the three vertices of the triangle, represented by their
three floating–point coordinates. Each triangle is then en-
coded with 96 bits! [16] proposed to represent these triangle
meshes by generalised strips in order to share one or two ver-
tices with the last triangle transmitted, reducing by at least a
half the memory required previously. This mechanism uses
also a small prediction scheme to optimise caching.

Then, these strips were generalised by a topologi-
cal surgery approach in [64, 65]. These works intro-
duced the most general framework for connectivity–driven
compression, and has been efficiently derived into the
Edgebreaker [57], and with a more flexible way into the
valence coding of [66, 2]. The Edgebreaker has been ex-
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(a) Vertex labels used in the next sequence. (b) First triangle not encoded: P, vertices 0, 1,
2 are marked. It will be the root of the dual tree.
The traversal starts from edge 12.

(c) Since vertex 3 is unmarked, 132 is created
and 3 is marked: C. This extends the dual tree
and the primal remainder. The traversal contin-
ues on the right.

(d) Similarly, since vertex 4 is unmarked, 143
is created and 4 is marked: C.

(e) Again, vertex 5 marked: C (f) Since vertex 0 is marked and the right trian-
gle is marked already, 105 is attached and the
traversal continues on the left: R. This extends
only the dual tree.

(g) C again: vertex 6 is marked. (h) Again, vertex 2 is already marked and the
right triangle also: R.

(i) Again: R.

Figure 14: Edgebreaker compression of a triangulated cube.

The corresponding work was published in Revista de Informática Teórica e Aplicada, special edition for Sibgrapi tutorials.



13 3D compression: from A to Zip

(j) C again: vertex 7 is marked. (k) Again, vertices 4 and then 5 are already
marked, with their right triangles also: RR.

(l) Since vertex 6 is marked, and both the right
and left triangles are marked, attach 567: E.
This extends the dual tree only.

Figure 14: Edgebreaker compression of a triangulated cube (continued).

(a) Decode P: create the first vertex. This is a
Handle operator of type 0: χ � 0 Ñ χ � 1

(b) Decode C: create a new triangle. This is an
Euler attachment: MEV3 �MTE.

(c) Decode C: create a new triangle: MEV4 �
MTE.

Figure 15: Wrap&Zip decompression of a triangulated cube.
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(d) Decode C: create a new triangle: MEV5 �
MTE.

(e) Decode R: attach one triangle: MTE. The
new edge will be identified later by the Zip
procedure.

(f) Decode C: create a new triangle: MEV6 �
MTE.

(g) Decode R: attach one triangle: MTE. (h) Decode R: attach one triangle: MTE. (i) Decode CRR as above.

(j) Decode E: close one triangle. This is a Han-
dle operator of type 2: b � 1 Ñ b � 0. The
two new edges will be identified by the Zip pro-
cedure.

(k) The above Wrap procedure already de-
coded the adjacencies of the traversal: this is the
dual tree.

(l) The Zip procedure will then identify the
edges of the primal remainder, matching edges
created by a C with the others.

Figure 15: Wrap&Zip decompression of a triangulated cube (continued).

The corresponding work was published in Revista de Informática Teórica e Aplicada, special edition for Sibgrapi tutorials.
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tended to handle larger categories of surfaces in [47, 40],
while valence coding has been tuned using the geometry
in [2], discrete geometry [33]. In addition, the generated
traversal of valence coding can be cleaned using [10].

With these improvements, the connectivity of usual mod-
els can be compressed with less than 3 bits per vertex. Ge-
ometry became the most expensive part, which can be re-
duced using prediction [66, 14] and high–quality quantisa-
tion [62, 24]. However, we will not focus here on the com-
pression of the geometry.

(b) Primal or dual remainders

Primal and dual graphs. The main advance of topological
surgery [64] was to substitute mesh connectivity compres-
sion by graph encoding. A graph can be considered as a sim-
plicial complex of dimension 1. Therefore, the 1–skeleton
Kp1q of any simplicial complex is a graph, called the pri-
mal graph of the manifold. Moreover for manifolds, we de-
fined the dual manifold in section 5.a(v) Polytopes, and the
1–skeleton of this dual manifold is also a graph, called the
dual graph of the manifold. For example, Figure 16 repre-
sents the primal and the dual graph of a triangulated sphere.

Figure 16: (left): the primal graph and (right): the dual graph of a
triangulated sphere.

Tree encoding. For simplicial surfaces, the dual graph has
a very nice property: each node of the graph has three in-
cident links. Encoding the connectivity thus resumes to en-
coding this dual graph. In order to encode the geometry, this
graph must be encoded by traversal, i.e. a spanning forest.
Since each connected component can be encoded separately,
we will consider only connected orientable surfaces, and the
spanning forest is, in that case, a tree. This tree can be en-
coded from its root by enumerating for each node how many
sons he has. This is the principle of both the valence coding
and the Edgebreaker algorithms. The first one encodes the
mesh by enumerating the valence of each node of a spanning
tree in the primal graph, while the second one encodes a lit-
tle more than the valence of each node of a spanning tree in
the dual graph. In this last case, the valence is either 1, 2 or
3 since the nodes of the dual graph have a constant valence,
which simplifies the coding.

Figure 17: (left): a dual spanning tree S21 extracted from the dual
graph of Figure 16(right). (right): the primal remainder S01 of S21,
which is a subgraph of the primal graph of Figure 16(left).

Remainders. For clarity of the presentation, we will focus
on spanning tree of the dual graph and the primal remainder,
which is the focus of the Edgebreaker. What follows can be
read identically by considering spanning tree of the primal
graph and the dual remainder, which is the point of view of
the valence coding. Consider a surface S , with a spanning
tree S21 of its dual graph. Observe that the links of S21

correspond to edges of S . Then, consider the primal graph
S1 (1–skeleton) of S. Its links also correspond to edges of
S . The graph S01 having the same nodes as S1 and the links
of S1 not represented in the dual spanning tree S21 is called
the primal remainder of S21. This remainder is what is left
to encode after the traversal of the dual mesh, i.e. S21, has
been encoded. For example, the Edgebreaker encodes this
primal remainder by specific symbols for the valence 1 and 2
of the dual tree. Moreover, this primal remainder contains all
the vertices of the mesh, and will therefore be used to drive
the encoding of the geometry.

(c) Topological Singularities

Topology of the remainders. If the remainder is a tree, then
it can be easily encoded. The original Edgebreaker works
directly in that case. However, this is not always the case, and
the topology of the primal remainder actually characterises
the topology of the (orientable) surface. For the dual remain-
der used by the valence coding, there is a detail to assert
when the surface has a non–empty boundary. This process
relies on a very simple calculus of the Euler characteristic
of the remainder. According to section 5.a(iii) Pure Simplicial
Complexes, the Euler characteristic of a surface is given by
χ pSq � #2�#1�#0, and according to the surface classi-
fication theorem introduces in section 5.a(iv) Simplicial Mani-
folds, χ pSq � 2� 2 � g pSq � b pSq. Since S21 is a tree with
exactly one node for each of the #2 faces, it has #2�1 links.
Therefore, the Euler characteristic of the primal remainder
S01 is χ

�S01
� � χ pSq � χ

�S21
� � 1� 2 � g pSq � b pSq.

We get the same result for the case of a dual remainder.

Remainder of topological spheres. If the surface S is a
topological sphere, then g pSq � b pSq � 0, and the remain-
ders have Euler characteristic 1. From the Jordan curve the-
orem [6], the remainders are connected, since they cannot be
disconnected by the corresponding spanning tree, which has
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no closed curve. Then, the remainder is a connected graph
with Euler characteristic 1: it is a tree. This primal remain-
der will be easy to encode, relating topological simplicity to
easy compression with connectivity–driven schemes.

Morse edges. For a generic remainder, its Euler character-
istic is 1 � 2 � g pSq � b pSq. In the case of a dual spanning
tree, the primal remainder is always connected. However, for
primal spanning trees on surfaces with a non–empty bound-
ary, the dual remainder can be disconnected. This can be
avoided if the primal spanning tree contains all the bounding
edges of the surface, except one per boundary components
to keep it as a tree. With this restriction, the remainder is a
connected graph with exactly 2 � g pSq � b pSq independent
cycles, where a cycle is a sequence of distinct adjacent links
whose last one is adjacent to the first one, and where inde-
pendent means that removing one link of a cycle does not
break any other. For each cycle, one edge that would break it
will be called a Morse edge, since it induces a change in the
topology of the surface, and corresponds to a Handle opera-
tor introduced in [46] and section 6(b) Handle Operators. Any
connectivity–driven compression scheme designed for topo-
logical spheres can be extended to any orientable surface by
encoding separately these Morse edges. For example, in the

Figure 18: (left): a primal remainder on a torus (genus 1): the
topmost and bottommost horizontal edges are identified, and so do
the leftmost and rightmost ones. (right) a primal remainder on an
annulus (two bounding curves).

case of a sphere, the primal remainder is a tree, as shown
on Figure 17. For a mesh with genus one or with two bound-
ary curves, the primal remainder is a graph with two cycles,
as shown on Figure 18.

8 The Edgebreaker example
The Edgebreaker scheme has been enhanced and

adapted from the Topological Surgery [64] to yield an effi-
cient but initially restricted algorithm [57], which encodes
the connectivity of any simplicial surface homeomorphic
to a sphere with a guaranteed worst case code of 1.83 bits
per triangle [34]. The Wrap&Zip algorithm introduced
in [58] enhanced the original Edgebreaker decompression
worst–case complexity from O

�
n2
�

to O pnq, where n is the
number of triangles of the mesh. It decompresses the mesh
in two passes, a direct and a recursive one. It is possible to
decompress it in only one pass using the Spirale Reversi

algorithm of [30], but it requires to read the encoded back-
wards, which is not appropriate for the Huffman encoding
of [34] or the arithmetic encoding. But the true value of
Edgebreaker lies in the efficiency and in the simplicity of
its implementations [59], which is very concise. This simple
algorithm has been extended to deal with non–simplicial
surfaces [35] and the compression of simplicial surfaces
with handles has been enhanced in [48] using handle data.
Because of its simplicity, Edgebreaker is viewed as the
emerging standard for 3D compression [60] and may pro-
vide an alternative for the current MPEG–4 standard, which
is based on the Topological Surgery approach [64].

In this section, we will enhance the Edgebreaker com-
pression for surfaces with a non–empty boundary. [34] en-
coded these surfaces by closing each bounding curve with
a dummy vertex. This is a very simple but expensive so-
lution: first, it requires encoding each bounding edge with
a useless triangle; second, it requires extra code to localise
the dummy vertex; and third, it gives bad geometrical pre-
dictors on the boundary. The original solution of [57] how-
ever encodes bounding curves a special symbol containing
their length, which solves the first item but does not describe
explicitly the topology of the surface, and gave bad predic-
tion on the boundary. As we introduced in [40], we use di-
rectly the handle data to encode the boundaries, which solves
the above mentioned problems and enhances the compres-
sion ratio. We will also introduce a small acceleration to the
Wrap&Zip procedure in order to avoid the recursion, accel-
erate the decompression and reduce the amount of memory
used.

(a) CLERS encoding

Gate based compression. Edgebreaker encodes the con-
nectivity of the mesh by producing the stream of symbols
taken from the set C,L,E,R,S, called the clers stream. It
traverses spirally the dual graph of a surface in order to gen-
erate a spanning tree. At each step, a decision is made to
move from one triangle t to an adjacent triangle t1 through
an edge e1 called the gate. The vertex v of t not contained
in the previous gate e is called the apex of the gate. This de-
cision depends on the previously visited triangles, which are
marked together with their incident vertices.

Right–first traversal. The spiral traversal means that the
next triangle is chosen to be the one on the right if not
marked, where the right triangle means that the link of the
new gate e1 contains the vertex next to the apex v of the
previous gate e (see section 5.a(iv) Simplicial Manifolds for the
definition of next). This gives a direct construction of the
dual spanning tree and an order on it.

CLERS codes. The traversal is then encoded by the va-
lences (1, 2 or 3) of the nodes of the dual spanning tree S21,
and for the valence 2 case, by the current position (H, left
or right) of the primal remainder S01 with respect to the new
triangle. The corresponding symbols are stated on Table 1.

The corresponding work was published in Revista de Informática Teórica e Aplicada, special edition for Sibgrapi tutorials.



17 3D compression: from A to Zip

operator S21 val. S21 pos. apex left tri. right tri.
C attach 2 H unmarked unmarked unmarked
R MTE 2 left marked unmarked marked
L MTE 2 right marked marked unmarked
E 2–handle 1 marked marked marked
S 1–handle 3 marked unmarked unmarked

Table 1: The CLERS codes.

The valence of the nodes of S21 can be easily detected dur-
ing the traversal, using the rules of Table 1 [57].

Figure 19: The Edgebreaker encoding. A C corresponds to a
vertex Creation. With the outward orientation, an L means that the
Left triangle has been visited, whereas an R means that the Right
triangle has been visited. S stands for Split, and E for End.

Original compression. We will now describe directly the
above formal presentation of the Edgebreaker. The algo-
rithm starts by encoding the geometry of a first triangle, that
will be the root of S21. In the text, we will call it a P triangle.
It corresponds to a 0–handle Handle operator. The traversal
begins right after with the rules of Table 1: if the apex is
not marked, a C is encoded with the geometry of the apex,
and the traversal continues on the right triangle. Otherwise,
if the left triangle is marked, an R symbol is encoded and
the traversal continues on the right triangle. Similarly, if the
right triangle is marked, an L symbol is encoded and the
traversal continues on the left triangle. If none of the trian-
gles are marked (but the apex is), an S symbol is encoded.
The traversal splits since the spanning tree has a branching
here. The first traversed branch begins with the right triangle,
and continues on the left one when the first branch ends. Fi-
nally, if both adjacent triangles are marked, the branch ends
with an E symbol. This branching mechanism can be simply
implemented with an S stack that stores the left triangle of
each S triangle.

(b) Fast decompression

Wrap&Zip decompression. The original Wrap&Zip pro-
cedure of [58] decodes the clers stream in two passes. The
Wrap simply decodes the dual spanning tree, with the ge-
ometry of each vertex at each C symbol. It decodes the S/E
branchings and positions correctly the adjacent triangles us-
ing the branching order and the distinction between the C or
L symbols and the R symbols. Then, the Zip procedure com-
pletes this spanning tree to obtain the dual graph. If the sur-

(a) P (b) C (c) R (d) E

Figure 20: Coding of a tetrahedron: PCRE.

face has the topology of a sphere, then there is enough infor-
mation to recover the entire dual graph, as we will see next.
The procedure is very similar to the enumeration of [55]: it
looks for the star of each vertex v, and if its star is not closed,
and if the two bounding edges of its star are associated to a
C on one side, and on another symbol on the other side, then
these two edges are identified. A recursive implementation
of this procedure is necessary to achieve a linear complexity,
using the fact that the closure of a star usually allows closing
adjacent stars, except when reaching an L or E symbol.

Fast Zip. Actually, the Zip procedure is a recursive traver-
sal of the dual spanning tree, and it closes the stars from the
leaves to the root. Actually, since the algorithm just built the
spanning tree, there is no need to traverse it all to find the
leaves. It is sufficient to use a C stack during the Wrap that
stores each C triangle. Popping the C stack reads it in the
reverse way, and the algorithm closes one star at each C
symbol, and three for each P symbol, instead of trying all
triangles. This spares half of the tests. Moreover, stars can
be closed at some R and E symbols during the Wrap. This
can be used to keep the size of the C stack small, and allows
a better usage of the multiway geometry prediction of [14].

(c) Topology encoding

Figure 21: Dual tree generated by the Edgebrealer traversal and
the primal remainder, with the two Morse edges in red.

Handle Sh symbols. As we said earlier, if the surface S
has genus g pSq ¡ 0, the primal remainder S01 is not a tree
anymore, as illustrated on Figure 21. For a surface with an
empty boundary, S01 has 2�g pSq cycles. These cycles can be
simply detected during the traversal and efficiently encoded
using [48], while preserving the original Edgebreaker com-
pression scheme. These cycles correspond to a branching,
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and thus to an S symbol. However, the two branchings in-
duced by each genus of the surface loops back, and the left
edge of the S triangle is visited before its right branch ends.
During the execution, this is easily detected when popping
the S stack containing the triangles left to S symbols: if the
top of the S stack is not marked, the algorithm continues as
normally. If the left triangle was marked, the S symbol actu-
ally corresponds to a handle, and will be marked as a handle
Sh symbol. This symbol is encoded as a normal S, and spe-
cial information identifying this Sh symbol is encoded in the
handle data. In order to decompress handles directly, the po-
sition of the left triangle in the clers stream can be encoded,
for example by the number of S symbol that preceded the
Sh symbol and by the number of R, L and E symbols that
preceded the left triangle, since handle Sh triangles are obvi-
ously closed by only these kind of triangles. These numbers
can be encoded by differences to spare even more space.

(a) Reaching first S triangle (b) Reaching second S triangle

(c) The lower–right E triangle
closes the handle.

(d) The upper–left E triangle
closes the handle.

Figure 22: Coding of a torus: the creation of two handle S trian-
gles: the first and the second S symbols.

Example. To illustrate the algorithm, consider the triangu-
lated torus of Figure 22, where the edges on the opposite
sides of the rectangle are identified. This simplicial complex
can be embedded in R3. The Edgebreaker compression al-
gorithm encodes the connectivity of the mesh though the fol-
lowing clers stream: CCCCRCSCRSSRLSEEE, com-
pleted with the following handle data: 0—4�,0—3�. There
are four triangles labelled with an S symbol. The left tri-
angles of the two last ones are visited when popping the S
stack. On the contrary, the two first ones are visited before
the being popped out of the S stack. These two triangles are
detected as handle Sh symbols. This is encoded in the han-
dle data as follows: the first handle Sh symbol is also the
first S symbol, and the first number encoded is therefore 0.
There are four possible matches (R, L and E symbols) for
its left triangle before the good one, which is encoded by the
4. Since it is an E triangle, it can be glued on both sides, and

the left side is indicated by the ε ��. The encoding is done
the same way for the second handle Sh symbol.

First bounding curve. This scheme can be extended to
boundary compression, since they correspond to the same
Handle operators. Using the handle data to encode bound-
aries is then more coherent, gives a direct reading of the sur-
face topology through this handle data even before decod-
ing the mesh, and allows a specific prediction scheme for
boundaries. Consider first a connected surface S with one
bounding curve. Suppose that we close it by adding a face
incident to each bounding edge of S, called the infinite face.
The resulted surface S� has no boundary, and can almost
be encoded by the previous algorithm. However, the infinite
face is not a triangle. In the same way that the P triangles are
not explicitly encoded, we will not encode this infinite face,
and start the compression directly one of its adjacent trian-
gle. As in the original Edgebreaker algorithm, we encode
and mark first all its vertices, e.g., all the vertices belonging
to the boundary of S . Then, for the first boundary, we only
need to know if the surface component has a boundary or
not.

Boundary Sb symbols. Now, consider a connected surface
has more than one bounding curve. Then, we distinguish
arbitrarily one of them as the first boundary and the encoding
uses the technique of the last paragraph. During the traversal,
we label each triangle touching a new bounding curve as
a boundary Sb triangle. As for handles, we encode it as a
normal S symbol in the clers handle, and specify that it is a
boundary Sb symbol in the handle data. To distinguish with
handle Sh symbols, their first number is negative. Also, due
to the orientation of the bounding curve, the left triangle
is always glued on its left side, and we do not need to
specify the last ε �� or ε ��, and we can avoid counting
the L symbols to localise it. From the Euler characteristic,
we know that there is exactly one boundary Sb symbol per
bounding curve. On Figure 23, the only handle S triangle is

(a) The first triangle is chosen
adjacent to a boundary. The ver-
tices of the central infinite face
are encoded.

(b) An unmarked boundary is
reached: the corresponding S
triangle is a boundary S triangle.

Figure 23: Coding of an annulus: initialisation and creation of
boundary S triangles.

the first triangle with a vertex on the internal boundary that
we encounter during the traversal. As said before, there are
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19 3D compression: from A to Zip

2 �g pSq�b pSq�1 such handle S triangles for each surface
component with genus g pSq and b pSq bounding curves.

Multiple components. The compression processes succes-
sively each surface component. When the component has no
boundary, the compression encodes explicitly the vertices of
the first triangle (uncoded P symbol). Otherwise, it encodes
the vertices of the first bounding curve. In practise, we only
need to transmit the number of components with boundary
of S . Then we transmit first all the components with a non–
empty boundary, and then the other ones.

(d) Compression algorithms

The compression scheme then decomposes in han-
dling the multiple components and their first boundaries
(Algorithm 4: compress), compress each component by
the dual spanning tree traversal (Algorithm 3: traverse).
The handles are tested along the traversal with Algo-
rithm 5: check handle. The whole process is linear and per-
formed in one pass only.

(e) Decompression algorithms

The decompression is performed in three passes, con-
trolled by Algorithm 7: decompress. The first pass decodes
the dual spanning tree (Algorithm 8: wrap), which is fur-
ther zipped using the backward sequence of C symbols (Al-
gorithm 9: fast zip). The compression described here en-
codes boundary curves, which improves prediction for the
interior. However this means that the size of the bound-
ary is not known to the decoder at the first pass, and
the geometry must be decoded in a posterior step (Algo-
rithm 10: read geometry). This pass could be done at the
wrap stage if we encode the boundaries when they are
closed, or if we encode the geometry of the bounding curves
in a separate stream.

9 Performances
We presented in this section the fundamental concepts of

connectivity–driven compression. In particular, we focused
on an extension of the Edgebreaker algorithm, which han-
dles manifold surfaces of arbitrary topology. The complexity
of the compression and the decompression are both linear in
execution time and memory footprint, independently of the
maximal number of the active elements during the execution.
However, the decompression still requires two passes, which
makes it harder to stream.

There are various ways of representing a geometrical ob-
ject, even for simplicial surfaces. For specific type of meshes,
some algorithms show better performances than other ones.
This distinction is one of the main shifts from the MPEG
compression [19] to the MPEG–4 one [54], which for ex-
ample encodes differently human faces than landscapes. Al-
though it is difficult to distinguish with precision classes
of meshes and to predict exactly the behaviour of com-
pression algorithms on these, we will try to get an intu-
ition of which characteristics of a mesh are well suited for

Algorithm 3 traverse(t): encode one component starting
from triangle t

1: stack Sstack ÐH // stack of the triangles left to S
symbols

2: repeat
3: t.mark Ð true // mark current triangle
4: v Ð t.apex // orient the triangle from its apex
5: if v.mark � false then // C triangle
6: write vertex pvq // encode the geometry of v
7: v.mark Ð true // mark the vertex
8: write symbol pCq // encode the clers code: C
9: tÐ t.right // spiral traversal to the right

10: else if is boundarypt.rightq or t.right.mark then //
right triangle visited

11: if is boundarypt.leftq or t.left.mark then // E
triangle

12: write symbol pEq // encode the clers code: E
13: check handle ptq // check if it is the left triangle

of a Sh triangle
14: repeat
15: if Sstack � H then // end of compression
16: return // exit the external repeat loop
17: tÐ Sstack.pop // pop the S stack
18: until not t.mark // skip left of a handle Sh

triangle
19: else // R triangle
20: write symbol pRq // encode the clers code: R
21: check handle ptq // check if it is the left triangle

of a Sh triangle
22: tÐ t.left // break in spiral traversal: to the left
23: else if is boundarypt.leftq or t.left.mark then // L

triangle
24: write symbol pLq // encode the clers code: L
25: check handle ptq // check if it is the left triangle of

a Sh triangle
26: tÐ t.right // spiral traversal to the right
27: else // S triangle
28: write symbol pSq // encode the clers code: S
29: if is boundarypvq then // boundary Sb triangle
30: write boundary ptq // encode boundary
31: t.mark Ð �#S // mark for the handle data
32: else // normal S or handle Sh triangle
33: t.mark Ð #S // mark for the handle data
34: Sstack.push pt.leftq // push the left triangle on the

S stack
35: tÐ t.right // spiral traversal to the right
36: until true // infinite loop
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Algorithm 4 compress(S): compress separately each com-
ponent of S

1: b� Ð 0 // counts number of components with boundary
2: for all vertices v P S do // reset marks
3: v.mark Ð is boundary pvq // mark boundary

vertices
4: for all triangles t P S do // compress components with

boundary first
5: if not t.mark and is boundaryptq then // not

boundary or already encoded
6: write boundary ptq // encode boundary
7: traverseptq // component compression
8: b� Ð b� � 1 // one more component with

boundary
9: for all triangles t P S do // compress the other

components
10: if not t.mark then // not already encoded
11: t.mark Ð true // mark P triangle
12: for all vertices v P Bt do // encode the 3 vertices of

the P triangle
13: write vertex pvq // encode the geometry of v
14: v.mark Ð true // mark the vertex
15: traversept.rightq // component compression
16: writephandle, b�q // write the number of components

with boundary

Algorithm 5 check handle(t): check if triangle t is left to a
Sh triangle

1: if not is boundarypt.rightq and t.right.mark Rttrue, falseu then // handle Sh triangle to the right
2: write

�
handle, t.right.mark�#�RE

�
// write the

handle data
3: if not is boundarypt.leftq and t.left.mark Rttrue, falseu then // handle Sh triangle to the left
4: write

�
handle, t.left.mark�#�LE

�
// write the

handle data

Algorithm 10 read geometry(Cstack1): decompress the
geometry

1: while Cstack1 � H do // traverse the stack
2: tÐ Cstack1.pop pq // pop the next element of the C

stack
3: if t ¥ 0 then // not a boundary triangle
4: read vertexptq // read a new vertex
5: else // boundary triangle
6: read boundaryptq // read a new bounding curve

Algorithm 7 decompress(streams): decompress separately
each component

1: repeat
2: s� tε Ð readphandleq // read handle data
3: if s ¡ 0 then // handle Sh symbol
4: glueps, t, εq // glue the handle on side ε before the

decompression
5: else // boundary Sb symbol
6: gluep�s, t,�q // close the bounding curve before

the decompression
7: until end of filephandleq // passed the last couple of

data
8: b� Ð s // last handle data counts number of

components with boundary
9: stack Cstack ÐH // stack of the C and boundary Sb

triangles
10: wrappb�, Cstackq // wrap using the clers stream
11: fast zippCstackq // closes the stars of the primal

remainder
12: read geometrypCstackq // reads the geometry of the

surface

Algorithm 9 fast zip(Cstack): decompress one primal re-
mainder

1: stack Cstack1 ÐH // reverse copy of the C stack for
the geometry

2: while Cstack � H do // traverse the stack
3: tÐ Cstack.pop pq // pop the next element of the C

stack
4: Cstack1.push ptq // copy the C stack
5: if t ¥ 0 then // not a boundary triangle
6: close starptq // close the star of the next vertex
7: Cstack Ð Cstack1 // returns the copy of the C stack

Model |#0| |#2| [58, 34] [57] [40] [57]/[40] [58, 34]/[40]

sphere 1 848 926 3.39 3.39 3.45 0.98 0.98
violin 1 508 1 498 3.16 2.21 2.25 0.98 1.41
pig 3 560 1 843 3.26 3.24 3.13 1.03 1.04
rose 3 576 2 346 3.37 2.95 2.64 1.12 1.28
cathedral 1 434 2 868 2.25 1.00 0.19 5.27 11.86
blech 7 938 4 100 3.25 3.18 2.40 1.33 1.35
mask 8 288 4 291 3.19 3.12 1.93 1.62 1.65
skull 22 104 10 952 3.51 3.51 3.30 1.06 1.06
bunny 29 783 15 000 3.36 3.34 1.27 2.62 2.64
terrain 32 768 16 641 3.03 3.00 0.40 7.43 7.51
david 47 753 24 085 3.45 3.85 3.07 1.25 1.12
gargoyle 59 940 30 059 3.28 3.27 2.11 1.55 1.55

Table 2: Comparative results on different models drawn on Fig-
ure 26. ‘Dum’ stands for the dummy vertex method to encode
meshes with boundaries [58, 34], and ‘Ori’ stands for the origi-
nal Edgebreaker [57], and [40] for the algorithm introduced here,
with the simple arithmetic coder of [50]. The size of the compressed
symbols is expressed in bit per vertex.
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Algorithm 8 wrappb�, Cstackq: decompress the dual trees
1: #2 Ð 0 // initialisation
2: stack Sstack ÐH // stack of the triangles left to S

symbols
3: repeat // components loop
4: if b� ¡ 0 then // component with boundary
5: b� Ð b� � 1; tÐH // first boundary
6: Cstack.push p�#2q // push the boundary

triangle for the geometry
7: else // component with an empty boundary
8: tÐ #2 // P triangle
9: Cstack.push ptq // push the first triangle for the

zip
10: for all vertices v P Bt do // decode the 3 vertices of

the P triangle
11: read vertex pvq // decode the geometry of v
12: tÐ t.right // spiral traversal to the right
13: #2 Ð #2 � 1 // initialisation
14: repeat // decompress one component
15: gluept, #2q // glue the next triangle eventually to

the boundary
16: sÐ read symbol pclersq // reads the next symbol
17: if s � C then // C triangle
18: Cstack.push p#2q // push the C triangle for

the zip
19: tÐ t.right // orient the new triangle to the right
20: else if s � R then // R triangle
21: tÐ t.left // orient the new triangle to the left
22: tryclose star pt.apexq // eventually zip the

right edge
23: else if s � L then // L triangle
24: tÐ t.right // orient the new triangle to the right
25: else if s � S then // S triangle
26: if not t.right.mark then // not a handle or

boundary S symbol
27: Sstack.push p#2.leftq // push the S triangle

for the next E
28: else if is boundaryp#2q then // boundary

triangle
29: Cstack.push p�#2q // push the boundary

triangle for the geometry
30: tÐ t.right // orient the new triangle to the right
31: else if s � E then // E triangle
32: tryclose star pt.apexq // eventually zip the

right and left edges
33: if Sstack � H then // end of the component
34: break // exits the component loop
35: tÐ Sstack.pop pq // pop the next element of

the S stack
36: #2 Ð #2 � 1 // next triangle
37: until true // infinite loop
38: until end of filepclersq // end of the clers stream

connectivity–driven compression schemes, and in particular
for the Edgebreaker.

(a) Compression Rates

Experimental results for the Edgebreaker are recorded
on Table 2 and Figure 24. We compared with the original
Edgebreaker implementation with the Huffman encoding
of [34] and the border handling of [58], and the encoding of
[40] with the simple arithmetic coder of [50]. The entropy
of the codes of [40] is always better than the other imple-
mentations of Edgebreaker, as shown on Figure 24(b). A
compression ratio of a few bits per vertex, or even less, is a
general order for efficient connectivity–driven compression
schemes.

(a) Size of the compressed file vs
complexity of the model.

(b) Entropy vs complexity of the
model.

Figure 24: Comparison of the final size and entropy: for the range
encoder, those parameters depends more on the regularity than on
the size of the model.

(b) Good and bad cases

Edgebreaker Valence coding
Topology–dependent ��� ���

[40]

Regular valence ��� ���
[66]

Lossy connec. � ���
[7] [2]

Self–similar connec. ��� �
[57] [33]

Irregular connec. � ���
[34] [10]

Geometric connec. ��� �
[15] [38]

Geometry prediction � ���
[42] [14]

Low resource use ��� ���
[59]

Table 3: Good and bad cases for the two main connectivity–driven
compression schemes.
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Topology–dependent applications. For the extended
Edgebreaker of [40], the separate handle data informs
directly the application of the topology of the mesh. Many
simple parameterisations, texturing or remeshing applica-
tions work only for closed surfaces without handle. The
handle data can be used to call a preprocessing step for sim-
plifying the topology before using these kind algorithms. For
the Edgebreaker, this handle data is not an overhead, since
encoding the handle and boundary S symbols as a true/false
code on the clers string is in the best case logarithmic as we
saw in section 3(c) Statistical Modelling, which is equivalent
to the handle data.

Regular connectivity. The valence coding of [66, 33] en-
codes particularly well meshes where the vertices have a uni-
form valence. This can be obtained by subdivision [44, 68] or
remeshing [3, 4]. Remeshing can be done also to improve the
Edgebreaker compression using the Swingwrapper of [7].
Without these regularisations, valence coding based algo-
rithms have better performance when the connectivity is lo-
cally regular, whereas the Edgebreaker performs better on
irregular meshes or meshes with a global regularity, such
as those obtained by subdivision algorithms or with some
self–similar connectivity. Meshes with a very irregular con-
nectivity would be better encoded by enumeration methods
of [55, 10].

Regular geometry. The geometry of the mesh is not
directly considered in connectivity–driven compression,
and therefore geometry–based compression will outperform
these schemes for the connectivity compression of meshes
with a regular geometry. However, the geometry can be used
to predict the connectivity, which works specifically when
the geometry is regular. This has been done for the valence
coding in [2, 38] and in [15] for the Edgebreaker.

Figure 25: The Edgebreaker cuts the compressed surface along a
curve in the space. An extrapolation of this curve is used to enhance
the parallelogram predictor. The predictor uses the parallelogram
predictor to guess the distance from the last vertex of the curve, and
rotates this estimation according to the approximating curve.

Geometry prediction. Geometry prediction uses already
decoded vertices to estimate the next vertex to be de-
coded, asserting that the geometry is locally regular. For
connectivity–driven schemes are usually based on the par-
allelogram predictor of [66]. It can be enhanced by using
more than one parallelogram to estimate the new position,
as described in [14]. This is particularly well adapted to the
valence coding since the traversal can be adapted to the pre-
diction. For the Edgebreaker, the parallelogram can be dis-

torted to adapt to local mean curvature of the surface, as
in [38], or to torsion and curvature of the primal remainder,
as described in [42] and on Figure 25.

Low resource applications. The Edgebreaker uses a de-
terministic traversal, independent of geometry considera-
tions. Although this is less flexible for geometry prediction
enhancements, it gives a very simple algorithm. Moreover,
compared to the valence coding schemes that needs to main-
tain sorted active boundaries along compression and decom-
pression, the Edgebreaker just needs a stack of past S sym-
bols. The Edgebreaker thus requires much less memory for
the execution, and spares a constant sort, which can become
expensive. More generally, connectivity–driven compression
schemes are easy to implement and quick to execute.

The above results are roughly summarised on table 3, as
a general appreciation from the author.

10 Next steps
The diversity of images requires a multiplicity of com-

pression programs, since specific algorithms usually perform
better than generic one (such as the popular Zip method), if
they are well adapted. In particular, the simple example of
Edgebreaker can be extended in many ways, to address spe-
cific issues of particular applications. Even with the few no-
tions of this tutorial, it is feasible to improve the state-of-the
art in 3D compression. In particular, the following directions
may be promising:

Non–simplicial meshes. Connectivity–driven compres-
sion schemes are easier on simplicial meshes, since the dual
graph has a constant valence. Most of the mesh compression
algorithms for polytope surfaces can be interpreted as a
simplicial encoding preceded by a triangulation of each
face. This triangulation is done in a canonical way from the
traversal, and the decoder just need to know the degree of
the triangulated faces. For example, the valence coding can
be extended by encoding simultaneously the vertex valences
and the face degrees, as in [2], and the Edgebreaker codes
can be combined in a predictable way using the codes
of [35].

Non–manifold meshes. Extending these methods to non–
manifold meshes directly is a hard task. The usual method
consists in cutting the non–manifold surface into manifold
pieces, using the techniques of [21], encoding the manifold
parts as separate components, and then encoding the cut op-
erations that were performed. The encoding of cut operations
can be done directly as in the handle data, or more care-
fully by propagating the curves formed by the non–manifold
edges.

Higher dimensions. For solid meshes, the Edgebreaker
compression has been directly extended to tetrahedral
meshes in [23, 63], and the valence coding has been ex-
tended in [31]. The principles are the same, but the encod-
ing needs some extra information to complete the intermedi-
ate dimension between the spanning tree and the remainders.

The corresponding work was published in Revista de Informática Teórica e Aplicada, special edition for Sibgrapi tutorials.
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This extra information has necessarily some expensive parts
to encode, similar to the handle S symbols that are neces-
sary to glue distant parts of the traversal. Minimising this
extra information is an NP–hard problem, as proved in [41].
For higher dimensions, the combinatory of mesh connectiv-
ity makes it difficult to find a concise set of symbols for
coding, or a good statistical model for them as was done
for surfaces in [34]. However, for high codimensions, the
connectivity remains simple while the geometry can be ef-
ficiently predicted. Seen from the other side, this means that
for low codimension, geometry–based coding can be very ef-
ficient, which is where isosurface compression outperforms
any connectivity–based compression.

Robustness. The Edgebreaker is robust in the sense that
it handles general manifold surfaces. However, it is not par-
ticularly robust with a noisy transmission, where the clers
codes can be altered. In that case, the grammar inherent to
these codes can be used to detect transmission errors, but not
directly to correct them.

Deformable meshes. For animation purposes, the
Edgebreaker can be used directly to compute the de-
formed mesh when its connectivity is constant, and using
for example [62] to interpolate the geometry. Local changes
in the connectivity can be further encoded using the ex-
plicit identification of vertices and triangles provided by the
Edgebreaker, similarly to the description of [69].
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http://www.angelfire.com/moon/awilson/
http://www.carva.org/thomas.lewiner
http://w3.impa.br/~lvelho/
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~tavares
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=fast_stellar_cgf.pdf
http://www.webscopeinc.com/about/team.html


T. Lewiner 26

(a) sphere (b) violin (135 comps, 138 bdries) (c) pig (6 bdries)

(d) rose (51 comps, 64 bdries, χ � 0) (e) cathedral (717 comps) (f) blech

(g) mask (7 bdries) (h) skull (genus 51) (i) bunny (5 bdries)

(j) terrain (k) david (l) gargoyle

Figure 26: Some of the models used for the experiments, with the beginning of Edgebreaker’s dual spanning tree: The ‘violin’ has 135
components and 138 boundaries. The ‘rose’ has 51 components, genus 1 and 64 boundaries. The cathedral has 717 components with
boundary. The ‘mask’ has 7 boundaries. The ‘skull’ has genus 51. The bunny has 5 boundaries.

The corresponding work was published in Revista de Informática Teórica e Aplicada, special edition for Sibgrapi tutorials.
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Summary of notations
R set of the real number
Rn � R� R� . . .� R Euclidean space of dimension n
Bp unit ball in Rp

Sp�1 unit sphere in Rp

N sets of the natural and relative integersvm, nw � tm, m�1, . . . , nu integer interval
ρ, σ, τ simplices
ρn, σn, τn simplices of dimension n
v vertices : simplex of dimension 0
e edge : simplex of dimension 1
t triangle : simplex of dimension 2
σn ¡ τm σn is incident to τm

Bσ � tτ, σ ¡ τu frontier of a simplex σ
K � tσu simplicial complex
Kn � tσp, p ¤ nu simplicial complex of dimension n
#m pKq � # tσm P Ku number of m–simplices of K
χ pKnq �°p�1qm#n�m pKnq Euler–Poincar characteristic of K
Kpmq � tσp P K, p ¤ mu m–skeleton of K
σ � τ � hull σ Y τ join of σ and τ
lk pσq � tτ P K : σ � τ P Ku link of σ
9st pσq � tσ � τ, τ P lk pσqu open star of σ

st pσq � 9st pσq Y �
ρP 9stpσq Bρ star of σ

BKn �  
σn�1 : # lk

�
σn�1� � 1

(
boundary of a pure simplicial complex

Md simplicial n–manifold
S �M2 triangulated surface
χ pSq � 2� 2 � g pSq � b pSq genus and number of boundaries of S

The corresponding work was published in Revista de Informática Teórica e Aplicada, special edition for Sibgrapi tutorials.


	Introduction
	Information Representation
	Coding
	Information Theory
	Levels of Information

	Arithmetic Coding
	Arithmetic Coder
	Algorithms
	Statistical Modelling

	Compression
	Compaction
	Direct Compression
	Progressive Compression

	Meshes and Geometry
	Simplicial Complexes and Polytopes
	Simplicial Complexes
	Local Structure
	Pure Simplicial Complexes
	Simplicial Manifolds
	Polytopes


	Combinatorial Operators
	Euler Operators
	Handle Operators

	Connectivity--Driven Compression
	Principles
	Primal or dual remainders
	Topological Singularities

	The Edgebreaker example
	CLERS encoding
	Fast decompression
	Topology encoding
	Compression algorithms
	Decompression algorithms

	Performances
	Compression Rates
	Good and bad cases

	Next steps
	Bibliography

