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Abstract. Acquired images often present missing, degraded or occluded parts. Inpainting techniques try to infer
lacking information, usually from valid information nearby. This work introduces a new method to complete
missing parts from an image using structural information of the image. Since natural and human-made objects
present several symmetries, the image structure is described in terms of axial symmetries, and extrapolating the
symmetries of the valid parts completes the missing ones. In particular, this allows inferring both the edges and the
textures.
Keywords: Image completion. Inpainting. Symmetry detection. Structural image processing.

(a) Hole. (b) Axis. (c) Completed image. (d) Completion detail.

Figure 1: Completion of a butterfly image: the marked missing region (a), in gray, is identified in the global structure of the image through
axial symmetries (b). It can be completed with texture from its symmetric part (c),(d).

1 Introduction
Acquired images are generally incomplete, either due to

the degradation of the media, like old paintings, pictures or
films, due to occlusion of scene parts from undesired objects
or due to channel losses in digital image transmission [18].
To overcome those issues, inpainting techniques try to com-
plete missing regions of an image. Since the ground truth is
unknown in real applications, the inferred content must be
consistent with the image as a whole.

This implies two step in the inpainting pipeline: analysis
and synthesis. The analysis step determines the characterist-
ics of the image relevant to completion. The synthesis step
then uses the gathered knowledge to extend the valid region.
Local methods analyze the boundary of the invalid region
and the synthesis is usually performed by diffusion-like pro-
cesses to propagate the boundary’s color. However, the dif-
fusion step may blur the inpainted region, harming the tex-
ture coherency. Other methods segment the image in texture-
coherent regions and synthesize a new texture to fill the hole,
based on the closest match with the boundary texture. Al-
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though this solves the blur problem, it may not respect the
global structure of the image. In particular, completing very
curved shapes or big holes remains an issue.

In this work, we propose to exploit the global structure of
the image for inpainting (see Figure 1). More precisely, we
estimate the image’s symmetries and complete the missing
part by their valid symmetric match. Since symmetry is an
important coherency criterion both for natural and human-
made objects, its analysis reveals much of the relevant image
structure. The present paper restricts to axial symmetries of
the image’s edges, and may be easily extended to entail more
general transformations and features. However, nice results,
including textures, can already be obtained with these restric-
tions.

2 Related Work
Image restoration. Inpainting methods can be categor-
ized according to the extent of the region the analysis and
synthesis operations work on. Early approaches use local
analysis to extend the valid image from a small neighbor-
hood around the missing region. In particular, Bertalmio
and Sapiro [3] propagate image lines (isophotes) into the
missing part using partial differential equations, interleav-
ing propagation steps with anisotropic diffusion [16]. This
extends the smooth regions while still respecting image
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Figure 2: The input image is pre-processed to extract a sampling of the image’s edge. The symmetry detection extracts the structure of this
point cloud, and these symmetries are used for completing the missing parts by mirroring adequate valid parts.

edges. Petronetto [17] created an inpainting algorithm in-
spired by heat diffusion to improve propagation. Barcelos
and Batista [2] combined the original inpainting with a vari-
ational approach to also extend level lines. Their method
avoids the diffusion step, as such it reduces blur and im-
proves speed. These local methods work very well for small
holes but introduce blur when dealing with large regions,
which harms the quality of results on regions with high fre-
quencies and texture. Global analysis try to locate relevant
regions in the entire image, or even in a large image data-
base [10] to handle very large missing regions if similar ob-
jects are present in the database.

On the synthesis side, several approaches consider com-
pletion as a texture synthesis problem: instead of completing
at a pixel level, these methods identify small regions of the
hole to be filled first and search for a best match throughout
the image. The matched region is copied and blended with
the surroundings. In particular, Efros and Freeman [7] cre-
ate new textures by putting together small patches from the
current image. Drori et al. [6] and Criminisi et al. [5] com-
plete the holes by propagating texture and contours. These
methods preserve local structure of the image, but may fail to
propagate global structure of the image like bending curves.
In this work, we propose a technique that identifies the object
structure and boundaries and incorporate this information in
the completion process. We argue that structure from object
symmetry can be used for inpainting in more complex ex-
amples.

Symmetry detection. Early works in symmetry detec-
tion deal with global and exact symmetries in point sets
like [1, 23] based on pattern-matching algorithms. This re-
stricts their applicability to image processing since most
symmetries found in nature or human-made are not ex-
act or might be slightly corrupted by noise. Zabrodsky et
al. [25, 26] measure the symmetry of a shape by point-wise
distance to the closest perfectly symmetric shape. The level
of symmetry can also be measured by matching invariant
shape descriptors [13], such as the histogram of the gradi-
ent directions [19], correlation of the Gaussian images [20]
or spherical functions [11]. Such symmetry measures work
well for detecting approximate symmetry, although they are
designed for global symmetry detection.

Recently, Loy and Eklundh [12] used the Hough Trans-

form to identify partial symmetries, i.e., symmetries of just
one part of the object [21]. Such partial symmetries can also
be obtained by partial matching of the local geometry [8, 14].
In particular, Mitra et al. [14] accumulate evidences of lar-
ger symmetries using a spatial clustering technique in the
symmetry’s space. The technique used in this paper is close
to Mitra et al. [14]. However, we focus on incomplete sym-
metries due to occlusion in images, and thus adapted their
symmetry detection.

Symmetry-based completion. Symmetries have been
used to complete shapes in different contexts. For example,
Thrun et al. [22] detect symmetries in 3D range image to
complete based on a search in the symmetry space, and
complete the whole model by a global reflection. Zabrodsky
et al. [24] use rectify shapes by symmetrization, even with
occluded parts. Mitra et al. [15] achieve similar results
for 3D shape. However, these techniques do not handle
partial symmetries or affect parts of a 2D image that are not
missing.

3 Method Overview
The proposed method is composed of two main steps:

symmetry detection, corresponding to the image analysis,
and mirroring for synthesis of lacking information. A simple
pre-processing is applied to the image to extract a sampling
of the image edges. The interactions between these steps
is schematized in Figure 2 and illustrated in Figure 3. The
input image contains a user-defined mask around the invalid
region. A simple pre-processing segments the image and
extracts a sampling of its edges (see Figure 3(a)-(d)). Then,
the symmetry detection step identifies the many symmetry
axes present in the object, as seen in Figure 3(f). Finally, the
completion step chooses the symmetry axis that best fits the
missing region and mirrors the texture and edges of the valid
parts into the hole (Figure 3(g)-(h)). These steps are detailed
below.

(a) Pre-processing

Object identification is a well studied problem. Many al-
gorithms have been proposed to segment images. While ex-
tremely relevant to our method, segmentation is not the focus
of this work. As such, we assume receiving a segmented im-
age as input. Symmetry extraction should ideally take into
account the border as well as the interior of the image’s ob-
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3 Symmetry-based completion

(a) Input texture image. (b) Input segmented image. (c) User-defined hole mask. (d) Edge image.

(e) Edge’s point cloud. (f) Symmetry axes and patches. (g) Mirrored edges. (h) Completed image.

Figure 3: Illustration of the pipeline of Figure 2.

jects. We use here only the border (edge) information for the
sake of simplicity. Moreover, we represent those edges by
points. Although it may loose some connectivity informa-
tion, it permits a versatile representation and fits better for
adapting geometric modeling techniques for symmetry de-
tection. Therefore, we perform an edge detection on the in-
put image through a difference of Gaussians implemented in
the GIMP package [9], and remove the artificial edges gen-
erated from the user-defined hole mask. We then perform a
stochastic sampling of the edges taking the gray values of
the edge image as probability. This generates a point set rep-
resentation of the edges. Finally, we compute the normal and
the local curvature at each point of the point set.

Figure 4: The symmetry axis are robustly defined from the normals.

(b) Analysis: symmetry detection

We are interested in approximate and partial symmetries,
since the image has incomplete information in the hidden
regions and since the image content may present several
inexact symmetries. Therefore, our approach is largely based
on the method proposed by Mitra et al. [14]. However, in
this paper, we will restrict the space of symmetries to axial
symmetries. Using the point set representation described

(a) Symmetry axis (b) Axis clusters

Figure 5: Clusterization of candidate symmetry axis.

above, valid partial symmetries should map a substantial
subset of the points to another one. In its basic form, the
symmetry detector stores for each pair of points their bisector
as a candidate symmetry axis (see Figure 4). Then it returns
the clusters of candidates with their associated matching
regions (see Figure 5). The clustering allows detecting only
approximate symmetries.

To improve robustness and efficiency of this basic
scheme, we enhanced this basic scheme as follows. On the
one hand, we can observe that the sampling of the edges does
not guarantee that a point p of the set is the exact symmetric
of another sample point q. However, their normals should be
mapped even with random sampling. Therefore, we define
for each pair pq the candidate reflection axis Tpq as the line
passing through the midpoint of pq and parallel to the bi-
sector of the normals at p and q (see Figure 4). The normals
are then symmetric by Tpq , although the points p, q may not.
On the other hand, reducing the number of candidate axis
would accelerate the clustering. Therefore, we reject a pair
p, q if their respective absolute curvatures are too different,
since the curvature is covariant with reflections. We also re-
ject a candidate axis Tpq defined above if points p and the
reflection of q are too far away.
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The filtered candidate axes are then represented by their
distance to the origin and their angle φ ∈ [0, π[ with re-
spect to the horizontal line. Clustering is performed in this
two-dimensional parameter space using Mean-Shift Cluster-
ing [4], taking into account the inversion at φ = π. Given
a candidate axis Tpq at the center of a cluster, its match-
ing regions are computed by propagating from the initial set
S = {p, q}: a neighbor r of a point s ∈ S is added if its
reflection through Tpq is either close to a point of S or in-
side the hole mask of the image. This last condition allows
detecting incomplete symmetries, which are crucial for com-
pletion.

(c) Synthesis: mirroring

The completion process first identifies from the image
edge structure which of the detected symmetries to use, and
then reflects the image’s texture from the valid parts to the
missing one. The ideal situation for our structural completion
occurs when a symmetry structure traverses the hole. In that
case, the sampled edges around the missing region clearly
define which valid part of the image is to be reflected. More
precisely, the border of the valid part must match the border
of the hole. We thus choose among all detected symmetries
the one that best fits the edges around the hole with edges of
the valid part.

(a) Successful reconstruction (b) Failed reconstruction

Figure 6: In the ideal case, a single reflection achieves continuity
on both sides of the hole. In real case, several symmetries must be
involved.

However, in many real cases, in particular those with
large missing parts, no single symmetry axis would map
valid edges to the edges near the hole (see Figure 6). To
overcome this issue, we complete the boundary from the
border inwards. To do so, we look for the largest structure
that maps with one of edges neighboring the hole and mirror
that structure (see Figure 7). The hole is diminished from the
synthesized region, and the process repeats until no structure
matches the reduced hole border.

Once the axes have been defined and the valid structures
have been mapped to the hole, we proceed to the image-
based completion. For each pixel i of the hole, we look for
the closest point p of the synthesized structure. This point p
has been reflected from a valid structure by a symmetry T
which is used to find the symmetric pixel j of i. The color of
j is simply copied into i. This approach is very simple and

(a) Input image (b) Half completed im-
age

(c) Ground truth

Figure 7: Fish example: a single axis may not ensure boundary
coherency on both sides.

Model # Points # Symmetries Timing
Butterfly 506 12 44
Eagle 765 9 83
Turtle 575 8 46
Lizard hand 271 10 87
Lizard body 294 10 122

Table 1: Characteristics of the symmetry-based completion for the
illustration of this paper. The timings (in seconds) were obtained on
a 2.8 GHz Pentium D.

may be enhanced in future works by more advanced texture
synthesis and insertion.

4 Results
Implementation details. The method described at the pre-
vious section can be implemented with different algorithmic
optimizations. During many steps of our algorithm, proxim-
ity queries were required. Therefore, we build a Delaunay
triangulation at pre-processing in order to support k-nearest-
neighbors queries. Among other already mentioned uses,
these queries serve the normal and curvature approximations
by a local second degree polynomial Monge form. In order
to choose efficiently the best axis that maps a valid structure
to the hole’s edge, we build a proximity graph. The vertices
of this graph are the valid structure points that are mirrored
into the hole. A link between vertices is created when they
have a common symmetry axis T and when their reflection
by T are close-by. The longest path in that graph determines
the best symmetry axis T .

Experiments. We experimented our technique in different
contexts. 1 presents the execution times including the entire
pipeline. The symmetry detection step accounts for 85% of
total time. The butterfly image of Figure 1 has symmetric
structures and background with the same axes. The eagle
image of Figure 8 has symmetric structures for the main
shape, but the background has a different symmetry. On
the contrary, the turtle image of Figure 9 has a symmetric
background but the animal’s symmetry is artificial, although
very coherent with the image. The lizard structure of Figure 6
was tested in two opposite configuration: perfect symmetric
and lack of symmetry.

Discussion. We achieve good results even by considering
only axial symmetries and simply copying the image texture
in the unknown region. When the symmetry structures com-
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5 Symmetry-based completion

(a) Input image (b) Point cloud (c) Symmetries

(d) Completed image (e) Ground truth

Figure 8: Eagle example: although the foreground is well com-
pleted, the background texture needs further or separate processing.

port the holes, the completion of the foreground is neat (see
Figures 1 and 9). The quality obtained in Figure 1 is a con-
sequence of symmetry being present in the background also.
Only in a detailed inspection (see Figure 1(d)), seams can be
detected between visible and the reconstructed region. These
seams can only be noted in the texture region and not in the
background.
Our method completes images based on symmetries from the
image’s edges, and supposes that the object’s texture is likely
to follow the same transformation. However, this may not be
the case. For example in Figure 8, the missing wing of the
eagle was well reconstructed from the visible one, although
the synthesized background differs in the tone of blue from
the original one. A simple blending may solve this case.
When no symmetry structure comports the missing part, the
method may fail in completing the hole. This is the case
of the lizard body of Figure 6(b) and of the background
in Figure 8: most of the missing pixels reflect out of im-
age bounds. They could be completed using local inpainting
methods [3, 17, 2]. A very interesting case is the turtle im-
age of Figure 9, where the original symmetry structure does
not cross the hole, although it can be extrapolated there. The
completion does not match the ground truth since an extra
limb was created for the turtle, but this is not easily noticed
since the model’s symmetry is strong. Such result would be
delicate to obtain with texture-based inpainting due to the
complex curved shapes involved.

5 Conclusions and Future Works
In this work, we propose to incorporate global structural

information of an image into inpainting techniques. In par-
ticular, we present a method for inpainting images that deals
with large unknown regions by using symmetries of the pic-
ture to complete it. This scheme is fully automated requir-
ing from user only the specification of the hole. The current
technique restricts itself to the analysis of axial symmetries
of the image’s edges, focusing on structure rather than tex-
ture. On the one hand, the transformation space can be easily

(a) Input image (b) Completed image (c) Ground truth

Figure 9: Turtle example: although the completion differs from the
original model, it is very coherent.

(a) Completed image (b) Ground truth

Figure 10: Flower example: texture elements are not yet considered
in the analysis.

extended using the same framework, incorporating transla-
tion, rotations and eventually projective transformations. On
the other hand, texture descriptors could be used to improve
both the symmetry detection and the image synthesis (see
Figure 10). Moreover, the insertion of the synthesized parts
into the image can be improved by existing inpainting tech-
niques.
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