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Abstract. A common variant of caricature relies on exaggerating characteristics of a shape that differs from
a reference template, usually the distinctive traits of a human portrait. This work introduces a caricature tool
that interactively emphasizes the differences between two three-dimensional meshes. They are represented in the
manifold harmonic basis of the shape to be caricatured, providing intrinsic controls on the deformation and its
scales. It further provides a smooth localization scheme for the deformation. This lets the user edit the caricature
part by part, combining different settings and models of exaggeration, all expressed in terms of harmonic filter.
This formulation also allows for interactivity, rendering the resulting 3d shape in real time.
Keywords: Caricature. Manifold Harmonics. Geometry Processing. GPU. 3d Faces. Shape Modeling.
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Figure 1: Progressive caricature of a scanned head: the user paints the regions to be caricatured, and chooses the amplitude (here µ = −6),
scale selection as curve and filter model to use for each part. The differences are obtained by registration with Figure 8 as template.

1 Introduction
Caricature is an illustration technique that exaggerates

specific characteristic traits in a portrait of a human subject.
Its main goal is to reveal the essence of a person by emphas-
izing particular aspects that visually identifies the individual.
In this way, some features are magnified while other features
are attenuated creating a non-realistic personalized impres-
sion of the subject [13].
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In the western culture, caricature has a long tradition, way
back to the Renaissance. Early examples can be found in
the works of Leonardo da Vinci. Subsequently, other great
artists such as Honoré Daumier specialized in this form of
expression. Nowadays, caricatures are present in many types
of media, ranging from newspapers and magazines to film
and television. It has been traditionally used in political
cartoons and then became a powerful means of entertainment
in general. Many public figures, such as politicians and
movie stars are associated with their caricatured depiction.
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As a practice, caricature can be considered an art form,
not only because the production of an effective caricature
requires skill and talent, but mainly because it essentially
depends on an interpretation of the reality. In that sense, each
caricaturist has a particular style that marks his/her work.

The social importance and appeal of caricature motivates
the investigation of this topic in Computer Graphics. In its
own way, it configures a remarkably rich area of research
because it can be seen both as modeling and as a visualiz-
ation problem, where perceptual and semantic issues play a
fundamental role.

The main challenge in this area is to develop models that
are able to sensibly take into account subjective parameters
and to implement systems that allow simple intuitive expres-
sion. In this perspective, this work introduces an interactive
system to create and model three-dimensional caricatures by
exaggerating the harmonic differences from a template.

Historically, the research in computer-based caricature
has its origins in the master’s thesis of Susan Brennan in
1982 [6]. Since then, the area experiences significant devel-
opment as reflected by the large number of publications de-
voted to this subject. Despite of those advances, the basic
problems are far from being completely solved and still mo-
tivate intense research efforts.

Related Work Computer-based caricature methods can
be broadly subdivided into three main categories depend-
ing on the principles adopted to model the problem:
template-based, extrapolation, and style learning methods.
These methods produce caricatures automatically or semi-
automatically, but most of them rely on user interaction.

Template-based methods employ a reference facial shape,
which contains specific features that can be emphasized
or de-emphasized to different levels in order to produce a
caricature. In general, the shape is defined geometrically
and warping techniques are used to deform the template
geometry interactively. Most of such systems work in two
dimensions directly with photographs or with illustrations of
a face [1, 8, 12] or parametric three dimensional shapes [11,
20]. The proposed techniques work directly on 3d shapes.

Extrapolation methods assume that a caricature exagger-
ates the traits distinguishing the face from the normal one.
They resort to an average face that serves as the basis for ex-
trapolating specific features. This kind of techniques works
by amplifying the difference of the input face from the mean
face. The previously mentioned seminal system of Bren-
nan [6] was based on such principles, also known by illus-
trators [22]. In recent years, several systems of this type have
been proposed [5, 14, 27]. A common way to model the
face in such systems is through principal component analysis
(PCA) that provides a representation in which the mean face
is explicitly defined. These systems also specify exaggera-
tion rules that allow the user to control the caricature effects
[9, 21, 30]. The present work formulates the differences in
harmonic space, which performs at interactive rates on gen-
eral shapes.

Style-Learning methods, instead of modeling the carica-
ture process by itself, attempt to recreate the mechanisms
used by caricature artists. This is typically done using statist-
ical inference techniques that construct a probabilistic model
from examples [10, 17, 18, 19, 25], capturing the style of a
specific caricaturist.

Contribution In this work, we propose to use spectral rep-
resentation of the differences between a template and the 3d
shape to be caricatured. We build on the Manifold Harmon-
ics geometry processing [28, 24, 23], since it provides a very
intuitive framework for mesh edition through a reduced set
of parameters. In particular it admits a direct GPU imple-
mentation [16] that performs at interactive rate.

We derive the extrapolation principle within the harmonic
space of the shape to be caricatured. We propose three differ-
ent harmonic deformation filters, extending usual 3d carica-
tures beyond human faces, e.g. using animal shapes. We also
use the harmonic basis to provide interactive controls to tune
the caricature: a localization control, which specifies which
parts of the face should be caricatured; and a scale control to
exaggerate a subset of the harmonics for the caricature.

Our formulations adapt to a GPU implementation that
correctly computes the per-vertex normals. This allows a
WYSIWYG interface that gives feedback on the user’s con-
trol in real time. Moreover, a partial result can be quickly
used in place of the initial shape, letting the user caricature
each feature with different settings (Figure 1).

2 Basics of Manifold Harmonics
In this section, we quickly review the basics of manifold

harmonics filtering [28, 23].

(a) Laplace harmonics

On a discrete mesh M with vertex set V , manifold har-
monics provide a linear basis Hk for the space of discrete
scalar functions f : V → R defined at the mesh vertices.
This basis is built from the eigenvectors of a discrete Laplace
operator, Hk being interpreted as the kth fundamental oscil-
lation mode of the mesh. Furthermore, the basis is sorted by
increasing frequency, the first eigenvectors corresponding to
large scale deformation and the last ones interpreted as fine
details or noise.

u
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v

Figure 2: Geometric elements for the discrete Laplace operator.

In order to constructHk, Vallet and Lévy use the Laplace-
De Rham operator derived from Discrete Exterior Calculus,
which is given by an N × N matrix ∆, where N = #V is
the number of vertices of the mesh. Its coefficients ∆uv are

The corresponding work was published in the proceedings of Shape Modeling International, Computers & Graphics 35(3), 2011..
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zero if vertices u and v are different and not adjacent, and
otherwise:

∆uv = −cot (βuv) + cot (β′uv)√
au · av

, ∆uu = −
∑
v

∆uv ,

where av is the area of the circumcentric dual of vertex v,
and angles βuv , β′uv are opposed to edge uv (Figure 2).

(b) Harmonic transform

The above definition of the discrete Laplace operator is
symmetric, guaranteeing the existence of real-valued ortho-
gonal eigenvectors Hk : V → R, satisfying ∆Hk(v) =
λkHk and, using Kronecher’s δ notation, for all vertices u,v
and all frequencies k,l, we have:

∑
v∈V

Hk(v) ·Hl(v) = δk,l,

N−1∑
k=0

av ·Hk(u) ·Hk(v) = δu,v.

Since (Hk, 0 ≤ k < N) is a basis, any scalar function
f : V → R has coordinates on this basis, which we
write f̃k. With the orthogonality properties, we obtain those
coordinates by simple projections [28]:

f(v) =

N−1∑
k=0

Hk(v) · f̃k, f̃k =
∑
u∈V

au ·Hk(u) · f(u) . (1)

(c) Scalar Filtering

Using the analogy with Fourier analysis, the square root
of the eigenvalue

√
λk is interpreted as the frequency of

harmonicHk. GIven a scalar signal on the mesh f : V → R,
the amplitudes f̃k of each of its frequencies of can be filtered
by amplifying each of them by ϕk ∈ R. The filtered signal
ϕf is then given by:

ϕf(v) =

N−1∑
k=0

Hk(v) ·
(
ϕk · f̃k

)
.

As observed in the original work [28], the high frequen-
cies (i.e. for k > n with n � N ) are expensive to com-
pute, increase the complexity of the filter control, and do not
provide significant modeling power at the global scale. We
thus use a single factor ϕd to amplify all those high frequen-
cies:

ϕf(v) =

n−1∑
k=0

Hk(v) ·
(
ϕk · f̃k

)
+ ϕd ·

(
N−1∑
k=n

Hk(v) · f̃k

)

=

n−1∑
k=0

Hk(v) ·
(
ϕk · f̃k

)
+ ϕd · df(v) . (2)

The residual df(v) of f at each vertex is computed at pre-
processing using the complementary expression: df(v) =

f(v) −
∑n−1
k=0 Hk(v) · f̃k. This way, the last eigenvectors

of the basis are never used, and only the restricted basis
(Hk, 0 ≤ k < n) needs to be computed.
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Figure 3: Workflow of our interactive 3d caricature system: during
preprocessing, the correspondences between the shape and the tem-
plate and the harmonic decomposition of the shape are computed,
and then the harmonic representations of their differences. The user
then interacts by selecting morphing, localization and scale con-
trols µ, χ, ϕ, visualizing the results of those controls in realtime.
The user then validates one of the three harmonic exaggeration
models, and its resulting caricature is quickly reused in place of
the new shape.

3 Interactive 3D Caricature Overview
We propose a caricature system in the extrapolation cat-

egory, which starts with a reference 3d template (e.g., a nor-
mal face) and a 3d shape (e.g., the face to be caricatured),
both represented as triangular meshes (Figure 4). We first
compute, for each vertex v of the shape, a corresponding
point xr(v) in the template (section 6). We decompose their
differences in the frequency domain, using the harmonic
basis of the shape, since we want to preserve and exagger-
ate its features, and not those of the template. We propose
three different representations of the differences between the
shape and the template: coordinate-wise x̃δ , as a normal dis-
placement ξ̃ or as a distance minimizing filter φ, which are
described in the next section.

The caricature is created by the user through several con-
trols (section 5): a morphing parameter µ, which amplifies
the differences; a localization function χ(v), which specifies
the region of the shape to be deformed; and a scale control
Φk, which selects and eventually amplifies the frequencies
used for the caricature. The localization function χ(v) serves
as a blending between the shape and the deformed region,
and is obtained from the characteristic function of that re-
gion through filtering, also using the harmonics basis.

Preprint MAT. 13/10, communicated on December 10th, 2010 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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Figure 5: Caricatures obtained with an ellipsoid as reference template, varying morphing parameter µ from −0.3 (top), −0.4 (middle) to
−0.6 (bottom), for the coordinate-wise filter (left), normal displacement filter (center) and distance minimizing filter (right).

Figure 4: Vertex-wise correspondences between a reference tem-
plate (left) and the original shape of Figure 1 to be caricatured
(right), colored according to the value of H170 on each vertex.

The computation of the caricature for each representation
is performed on the GPU, with an exact normal computa-
tion (section 6), allowing the display of the three resulting
caricatures in real time with high quality. Finally, an optim-
ized reprocessing allows using the result of one caricature
in place of the shape, caricaturing each part independently
with different parameters [2], in a layer-by-layer manner.
The schematic representation of the whole process is illus-
trated in Figure 3.

4 Harmonic Exaggeration
In this section, we propose three harmonic representations

for the differences between the shape and the template. We
denote by x(v) = (x(v), y(v), z(v)) ∈ R3 the position of
vertex v of the shape, and xr(v) the corresponding point
in the template. The k-th harmonic of the shape is denoted
Hk : V → R.

Given a morphing parameter µ, and a representation X̃k

of the differences, we compute the coordinates µx(v) of our
exaggerated shape using the generic form:

µx(v) = x(v) + µ ·

(∑
k

Hk(v) · X̃k

)
. (3)

This ensures that for µ = 0, 0x(v) = x(v), and that for
µ = 1, xr(v) is approximated by 1x(v). The caricature is
obtained for µ < 0, exaggerating away from the template
(Figure 5).

(a) Coordinate-wise filter

The simplest approach looks for a strict morphing:
1x(v) = xr(v), which translates in our framework by
X(v) ≡ xδ(v) = xr(v) − x(v). The coordinate-wise ex-
aggeration is written in coordinates as:

c
µx(v) = x(v) + µ ·

(
n−1∑
k=0

Hk(v) · x̃δk + dxδ(v)

)
(4)

This ensures that for µ = 0, c0x = x and for µ = 1, c1x = xr.
Without further control, this corresponds to linear morphing
as obtained by direct correspondences [15].

Observe that there is no single filter ϕ that achieves map-
ping the three scalar signals x(v), y(v) and z(v) of the shape
to the template through Equation (2). This is only possible in
general with three different filters ϕxk , ϕyk and ϕzk, which are
defined here by:

ϕxk = 1 + µ · x̃δkx̃k
ϕyk = 1 + µ · ỹ

δ
k

ỹk

ϕzk = 1 + µ · z̃δkz̃k

 =⇒µ x(v) =

 xϕx(v)
yϕy (v)
zϕz (v)

 .

Such triple filtering allows mapping any mesh to any mesh
with the same connectivity, and does not use much of the
intrinsic geometry of the shape (Figure 5).

The corresponding work was published in the proceedings of Shape Modeling International, Computers & Graphics 35(3), 2011..
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Figure 6: Localization control: by a simple pick on the mesh (left), the user sketches a region to deform χ01. This region is smoothed by
cutting the high frequencies k ≥ nχ of its characteristic function χ01, here with nχ = 32 for the top row, 96 for the middle one and 192 for
the lowest row, out of n = 512 computed frequencies. The results of the three filters with µ = −0.8, in the same order as Figure 5.

(b) Normal displacement filter

In order to model the shape to template differences
through a single scalar signal, we must give up the exact
morphing 1x(v) ≈ xr(v). We propose to approximate the
difference xδ(v) by its projection ξ(v) along the shape nor-
mal n(v) ∈ S2 at vertex v: ξ(v) = 〈 xδ(v) | n(v) 〉.
This normal displacement ξ : V → R is a scalar sig-
nal, directly representable in the low and high frequencies
of the shape by ξ̃k, dξ(v) through Equation (2). Interpreting
X(v) ∼= ξ(v) · n(v), the normal displacement exaggeration
is derived from Equation (3):
n
µx(v) = x(v) + µ ·

(
n−1∑
k=0

Hk(v) · ξ̃k + dξ(v)

)
· n(v) (5)

On perfect conditions [7], xr(v) = x(v) + ξ(v) ·
n(v), guaranteeing the morphing. The specificity of those
conditions means that this filter restricts the deforma-
tion, preserving more of the original geometry of the
shape (Figure 5). However, this formulation generates auto-
intersections in the caricature for large |µ|.
(c) Distance minimizing filter

Our third filter models the caricature directly as a spectral
deformation [24], looking for a single scalar filter ϕ,ϕd that,
equally applied to each of the three coordinate signals x(v),
y(v) and z(v) would best approximate the template. Using a
2-norm, pair-wise distance for approximation measure, this
error is expressed as

∑
v∈V ‖ ϕx(v) − xr(v) ‖2, where the

optimization variables ϕ,ϕd appear in ϕx =
∑n−1
k=0 Hk(v) ·

(ϕk · x̃k) + ϕd · dx(v). Subtracting 1 to each ϕk and to ϕd
is equivalent to replacing xr by xδ (see appendix):

oφ,oφd = argminϕ,ϕd
1

2

∑
v∈V
‖ ϕx(v)− xδ(v) ‖2

This minimization actually simplifies due to the orthogon-
ality of the harmonic basis, and its solution is explicit:

oφk =

〈
x̃k
∣∣ x̃δk〉

‖x̃k‖2
, oφd =

∑
v∈V

〈
dx(v)

∣∣ dxδ(v)
〉

∑
v∈V ‖dx(v)‖2

.

This optimal filter is then exaggerated by morphing para-
meter µ using Equation (3):

o
µx(v) = x(v)+µ ·

n−1∑
k=0

Hk(v) ·oφk · x̃k+µ ·oφd ·dx(v). (6)

This filter uses few extrinsic geometry of the shape, and thus
further restricts the deformation possibilities, for small |µ|
(Figure 5). In positive terms, it better preserves the intrinsic
geometry of the shape even for large |µ|.

5 Localization and Scale Controls

The above filters are already controlled by the morphing
parameter µ, with the generic formulation of the caricatured
coordinates µx(v) = x(v)+µ ·

(∑
kHk(v) · X̃k

)
, with X̃k

according to the chosen filter (Equations (4), (5) and (6)). We
enhance the user control by letting her/him specify which
part of the shape (e.g. nose, chick) should be deformed, and
how much each scale (i.e. frequency) should contribute to
the deformation. Those controls are injected in the generic
form of µx.

(a) Localization control

The user specifies the region to be deformed simply by
painting on the shape (Figure 6). The vertices picked by
the pointer defines a characteristic function on the mesh:
χ01 : V → R. This function is typically 1 for the painted
vertices and 0 otherwise, but intensity values lower than 1
may be specified before picking. The deformation is then
restricted to the painted region by: µx(v) = x(v)+µ·χ01(v)·(∑

kHk(v) · X̃k + dX(v)
)

.

If restricting the deformation directly to the painted re-
gion, the blending by χ01 would lead to cracks. We decom-
pose χ01 to obtain a smoother localization function χ. Since
we already computed the harmonics decomposition on the
mesh, we obtain a surface Gaussian smoothing χ interact-

Preprint MAT. 13/10, communicated on December 10th, 2010 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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ively by a low-pass filter on χ01:

χ(v) =

nχ−1∑
k=0

Hk(v) · χ̃01k .

The cutoff frequency nχ is specified by the user. The carica-
ture is then smoothly localized by:

µx(v) = x(v) + µ · χ(v) ·

(∑
k

Hk(v) · X̃k + dX(v)

)
.

The user can caricature independently several regions by
using result on one region as the new shape, and specify a
new region on that shape.

(b) Scale control

Our caricature system offers controls to exaggerate rather
fine details or larger scale differences, by restricting or amp-
lifying the difference representation to certain frequencies.
This is simply done through an independent filter Φk,Φd
(Figure 7):

µx(v) = x(v)+µ χ(v)

(∑
k

Hk(v) Φk X̃k + Φd dX(v)

)
.

Figure 7: The result of Figure 6 with nχ = 96 and the normal
displacement filter is used in place of the original shape to continue
the caricaturing on the chin (left). The frequencies can be used
equally (middle) or selecting and amplifying some of them through
Φ, here amplifying intermediate frequencies (right) to mark the chin
wrinkle.

Combining with the morphing, localization and scale con-
trol, we get the final formulations for each filter:

- coordinate-wise filter (Equation (4)):

c
µx(v) = x(v)+ µ χ(v)

(
n−1∑
k=0

Hk(v) Φk x̃δk + Φd dx
δ(v)

)
.

- normal displacement filter (Equation (5)):

n
µx(v) = x(v)+µ χ(v)

(
n−1∑
k=0

Hk(v) Φk ξ̃k + Φd dξ(v)

)
n(v).

- distance minimizing filter (Equation (6)):

o
µx(v) = x(v)+µ χ(v)

(
n−1∑
k=0

Hk(v) Φk
oφk x̃k + Φd

oφddx(v)

)
.

6 Implementation
The above formulations allow for interactive implementa-

tion, offering to the user an immediate return from the chosen
setting of each control. This is achieved through a GPU im-
plementation of the filters, leaving to the CPU the low-pass
filter for the localization control χ, which is very fast since
nχ is small. The picking for the scale control Φ and the defin-
ition of χ01 is also handled in CPU. Finally, to correctly illu-
minate the caricatured shapes, we propose a GLSL program
to compute the vertex normals. This geometry shader is not
specific to our filters and would apply to any triangular mesh.

(a) Shape / template correspondences

The correspondences computation is a challenging prob-
lem, mainly because geometries may differ considerably
between the template and the shape. In addition, our filters
presume that meshes coordinates are represented in a com-
mon global coordinate system, requiring a previous registra-
tion step.

A first option for the correspondences relies on semi-
automatic cross-parameterization [15]. A set of matching
vertices is obtained by user interaction, and a common,
coarse base mesh is constructed on those vertices. The con-
nectivity of the shape is then mapped onto the template
through the parameterizations obtained on each element of
the base mesh. Then, we align the shape to the template
through a rigid-body transformation, computed by minimiz-
ing a point-to-point error metric between a set of correspond-
ences. We use the correspondences obtained by the cross-
parameterization, and a fast registration based on singular
value decomposition [3] (Figures 10, 11 and 14).

Since the parameterization step is closely related to the
registration step, as the quality of both results is dependent
on the quality of the correspondences the reverse approach
is feasible. A robust registration actually defines (or may
help improving) the correspondences between the shape and
the template. We illustrate this approach by using a single
ICP [4] with automatic pre-alignment on some of the results
(Figures 1 and 8).

As a final step of the caricature, the user may magnify all
the previously edited exaggerations at once. A simple way to
obtain such effect is to consider as template a simplified or
scaled down version of the shape (Figures 1 and 8). The ver-
tices of the versions of the mesh then naturally correspond.

(b) GPU feeding and normal computation

We opted for GLSL as programming language for its
portability, and follow previous GPU Manifold Harmonic
filter implementation [16]. It uses a fragment shader for
the summation of Equation (2) and a render-to-vertex-buffer
copy to obtain µx for each filter. The only difference resides
in the larger number of textures: x̃δ , dxδ , ξ̃, dξ, n and oφ,
complementing the basisHk, original position x̃, dx and the
controls µ, χ and Φ.

The corresponding work was published in the proceedings of Shape Modeling International, Computers & Graphics 35(3), 2011..
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distance minimizingcoordinate-wisenormal displacement coordinate-wise

Figure 8: Progressive caricature of a face model registered to the face of Figure 5. The last step uses a scaled down model as template.

uniform float w,h ; // buffer dimensions
uniform float max ; // maximal area
varying in float id[], d−1[]; // vertex id and inverse degree

void main()
vec3 e0 = gl PositionIn[1].xyz - gl PositionIn[0].xyz ;
vec3 e1 = gl PositionIn[2].xyz - gl PositionIn[0].xyz ;
vec3 nT = max ∗ cross(e0, e1) + vec3(0.5,0.5,0.5) ;
for (int i=0; i< gl VerticesIn; i++)

gl FrontColor.rgb = d−1[i] * nT ;
gl Position.x = 2.0 ∗ mod( id[i], w ) / w - 1.0 ;
gl Position.y = 2.0 ∗ floor( id[i]/w ) / h - 1.0 ;
EmitVertex() ;
EndPrimitive() ;

Algorithm 9: Geometry shader for the vertex normal computation.

We introduce a vertex normal computation using the same
GLSL framework. We render the triangle mesh once with the
updated vertices coordinates, and a fixed texture containing
the vertex id i(v) and the inverse of its degree d−1(v). The
geometry shader (Algorithm 9) computes the triangle normal
nT and, for each triangle vertex v, emits a point at the 2d
position in the normal array corresponding to its id i(v),
with a color encoding d−1(v) nT . Using a 1/1 blending
function performs the final sum, the frame buffer ends up
storing, for each vertex, the average of the normals of its
adjacent faces. This sum is easily improved by weighting
each normal by the area of the triangle, i.e. avoiding to
normalize the cross product. The normal is color coded with
a small workaround to the normalization. The normal is
finally used after a render-to-normal-buffer copy.

(c) Fast use of a result as a new shape

The versatility of the proposed controls may lead the user
to prefer one filter for some part of the caricature and differ-
ent filters or control values for other parts. This is possible
by using a partial caricature result in place of the original
shape, in a layer-by-layer process. In particular, this permits
caricaturing one feature at a time, as recommended by pro-
fessional [2]. The first CPU preprocessing computes the tem-
plate/shape vertex-wise correspondences, the manifold har-
monics basis and the filter elements x̃δ , dxδ , ξ̃, dξ and oφ. To
reduce the computations, we keep the correspondences and
harmonic basis, preserving the original features of the shape.
Only the filter elements are updated and re-sent to the GPU.

verts Hk X̃ user
model fig. template #V secs secs fps
Face 1 1,4 Face 3 49k 429 4.4 8.6
Simple 5-7 Ellipsoid 50k 422 3.8 8.5
Face 2 8 Simple 33k 217 2.5 8.8
Lion 10 Beethoven 30k 171 1.1 12.1
Face 3 11 Dog 36k 191 1.7 10.6
Planck 12 Egea 49k 402 3.9 9.0
Egea 13 Planck 31k 183 2.4 9.6

Table 1: Performance tests on a 2.8GHz processor with a GeForce
GT 9600M with 512MB of RAM. The interaction speed includes
the model display, picking, the three filters and the vertex normal
update. It is measured in frame per second (fps), while the pre-
computation times are expressed in seconds.

7 Results
We experiment our interactive caricaturing tool, letting

the user choose the filters that were more expressive to
her/him. We first observe that each of the three filters was
used, with a preference on the normal displacement filter for
smooth shapes (Figure 7), distance minimizing for isolated
parts (Figures 1, 8, 12 and 13) and coordinate-wise for the
final exaggeration (Figure 8).

We also test different correspondences computation meth-
ods: cross-parameterization [15], as illustrated in Figures 10,
11 and 14, registration only and scaled down model, both
used in the examples of Figures 1 and 8.

We set the cut-off frequency to nχ = 96. We can use
strong morphing parameters for the distance minimizing
filters: µ = −8.0, while much lower ones−0.8 > µ > −2.4
suit better for the other filters. The scale control Φ was set by
hand, with amplifications from 0 to 2.

Interaction performances Our harmonic formulation al-
lows interactive rates (Table 1), and we take advantage of
this capability by introducing our WYSIWYG interface for
3d caricature. This feature let the user quickly tune express-
ive caricatures even with a single iteration of the parameters
(Figures 11 and 10). The fast re-use of the result as template
also permits more sophisticated effects, while keeping the in-
teractivity of the interface (Figures 1, 8, 13 and 12).
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coordinate-wise = -0.75 coordinate-wise

 = 0.55

normal displacement
 = -0.25

 = 0

 = 1

distance minimizing

 = -1.0

distance minimizing
 = -0.75

normal displacement
 = 0.45

Figure 10: Independent caricatures obtained using different filters, regions and morphing parameter values, using Beethoven model as
template for the lion head. For each caricature, the vignettes represent the selected region χ01 (bottom) and blending function χ (top) all
obtained with nχ = 96. The scale control has been used for the middle row, and is displayed below the vignettes.

Indeed, the interface achieves above 8 frames per second
when displaying the three filters simultaneously, even with
the picking and smoothing of χ which takes in average 39
milliseconds on the models we use (Table 1). The substi-
tution of the shape by one of the results lasts in average
1.2 seconds for the filter computation on CPU and up to 4
seconds for the reprocessing.

Filter comparisons We can compare the filters intro-
duced here based on some preliminary experiments. The
coordinate-wise filter allows for blended exaggeration or re-
duction (as Egea’s mouth in Figure 13). Among the three
filters, it is the most appropriate for generating sharp fea-
tures, such as the nose in Figure 6, although with large µ
it can induce self-intersections of the model (Figure 14). It
is also appropriate for the final exaggeration with a scaled
down template. The normal displacement filter must be used
with small µ to keep a coherent model, but suits very well to
inflate regions without thin features, such as the chin in Fig-
ure 8 or large noses in Figures 1 and 12. Finally, the distance
minimizing filter, by its least squares nature, offers subtle,
diffusive but shape preserving deformations. For example in
Figure 12, the ears are exaggerated but the inner cartilage
shape is preserved, similarly to Egea’s scar in Figure 13.

The left group of Figure 14 illustrates the use of the
coordinate-wise filter alone, varying the morphing parameter
µ without other control. This morphing exactly corresponds
to the only cross-parameterization approach [15] if χ ≡ 1,
and we can observe the more expressive results obtained in
Figures 12 and 13.

Finally, our formulation does not rely on a specific human
face model, and thus allows for other caricature styles, such
as using animals (Figure 11) or even caricaturing animals
(Figure 10).

Discussion The use of manifold harmonics to model the
exaggeration as a filter restricts the deformation to operate
on non-localized basis. The reduction of the filters to not too
high frequencies further limits the ability to capture details
such as wrinkles, while a more careful treatment of high
frequencies may [26].

The correspondence accuracy may also impact the result.
In particular, using only continuous cross-parameterization
reveals theC1-discontinuity of the correspondences for large
|µ| (in particular the left Egea in the last row of Figure 14).

8 Conclusion
In this work, we propose an interactive tool for 3d ca-

ricature modeling. It derives the extrapolation principle [6]
in terms of harmonic filtering, introducing interactivity and
providing morphing, localization and scale controls. This
work may be improved in several directions, among which
enhancing the interface with automatic segmentation to se-
lect significant parts to be exaggerated, adding subjective
learning in the interface with intelligent galleries [29], and
including texture and non-photorealistic rendering.
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coordinate-wise = -0.27

distance minimizing

 = 0.4

distance minimizing

 = -0.5

coordinate-wise = -0.67 = 0

 = 1

Figure 11: Independent caricatures obtained using different regions and morphing parameter values, using a dog head as template. For each
caricature, the vignettes represent the selected region χ01 (bottom) and blending function χ (top) all obtained with nχ = 96.

distance minimizing distance minimizingnormal displacement

Figure 12: Progressive caricature of the Max Planck model with template from Egea (Figure 14).
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Figure 13: Progressive caricature of the Egea model, with reference from the Max Planck (Figure 14).

1

0

0

-1

μ

μ

Figure 14: Varying morphing parameter µ from +1 to −1 from Egea to Max Planck (left) and reversely (right), using the coordinate-wise,
normal and distance minimizing filter.
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A Distance optimization details
The distance minimizing filter oφk,oφd is defined as the

global minimum of the quadratic functional F (ϕ,ϕd) =
1
2

∑
v∈V ‖ϕx(v) − xr(v)‖2. First, substituting ϕ per ϕ − 1

leads to a simpler form:

ϕx(v)− xr(v) = x(ϕ−1)+1(v)−
(
xδ(v)− x(v)

)
=

n−1∑
k=0

Hk(v) · (ϕk − 1) · x̃k + (ϕd − 1) · dx

−

(
n−1∑
k=0

Hk(v) · x̃k + dx− x(v)

)
− xδ(v)

= x(ϕ−1)(v)− 0− xδ(v)

Using this substitution and the orthogonality properties of
the harmonic basis allows to solve this optimization problem
explicitly. Without grouping the high frequencies yet, i.e.
considering ϕk = ϕd for k ≥ n, we can write F in the
harmonic basis.

F (ϕ) =
1

2

∑
v∈V
‖ϕx− xδ‖2

=
1

2

∑
v∈V

∥∥∥N−1∑
k=0

Hk(v) · (ϕk · x̃k)−
N−1∑
k=0

Hk(v) · x̃δk
∥∥∥2

=
1

2

∑
v∈V

∥∥∥N−1∑
k=0

Hk(v) ·
(
ϕk · x̃k − x̃δk

) ∥∥∥2
=

1

2

∑
v∈V

〈N−1∑
k=0

Hk(v) ·
(
ϕk · x̃k − x̃δk

)
∣∣∣N−1∑
l=0

Hl(v) ·
(
ϕl · x̃l − x̃δl

) 〉
Grouping the terms by v and using Equation (1):

F (ϕ)=
1

2

N−1∑
k,l=0

(∑
v∈V

Hk(v)Hl(v)

)
·〈

ϕk · x̃k − x̃δk

∣∣∣ϕl · x̃l − x̃δl

〉
=

1

2

N−1∑
k,l=0

δk,l

〈
ϕk · x̃k − x̃δk

∣∣∣ϕl · x̃l − x̃δl

〉
=

1

2

N−1∑
k=0

∥∥∥ϕk · x̃k − x̃δk

∥∥∥2
=

1

2

n−1∑
k=0

∥∥∥ϕk x̃k − x̃δk

∥∥∥2 +
1

2

N−1∑
k=n

∥∥∥ϕd x̃k − x̃δk

∥∥∥2
The last line is deduced by grouping the high frequencies.

The minimum of functional F is achieved when its gradi-
ent
[

∂F
∂ϕ(0) ,

∂F
∂ϕ(2) , . . . ,

∂F
∂ϕ(n−1) ,

∂F
∂ϕd

]
vanishes:

∂F

∂ϕk
= 0 =

〈
x̃k
∣∣ ϕk · x̃k − x̃δk

〉
= ϕk · ‖x̃k‖2 −

〈
x̃k
∣∣ x̃δk〉.

The high frequency part goes the reverse way of the previous
derivation of F :

∂F

∂ϕd
= 0 =

N−1∑
k=n

〈
x̃k
∣∣ ϕd · x̃k − x̃δk

〉
=

N−1∑
k,l=n

δk,l ·
〈
x̃k
∣∣ ϕd · x̃l − x̃δl

〉

=

N−1∑
k,l=n

∑
v∈V

Hk(v)Hl(v) ·
〈
x̃k
∣∣ ϕd · x̃l − x̃δl

〉

=
∑
v∈V

〈 N−1∑
k=n

Hk(v) · x̃k

∣∣N−1∑
l=n

ϕd ·Hl(v) · x̃l −Hl(v) · x̃δl
〉

=
∑
v∈V

〈
dx(v)

∣∣ ϕd · dx(v)− dxδ(v)
〉

= ϕd ·
∑
v∈V
‖dx(v)‖2 −

∑
v∈V

〈
dx(v)

∣∣ dxδ(v)
〉
.

Each equation is linear and independent of the other. The
minimum argument oφ,oφd of F is then explicitly given by:

oφk =

〈
x̃k
∣∣ x̃δk〉

‖x̃k‖2
, oφd =

∑
v∈V

〈
dx(v)

∣∣ dxδ(v)
〉

∑
v∈V ‖dx(v)‖2

.
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