Approximations by smooth transitions in binary space partitions
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Abstract. This work proposes a simple approximation scheme for discrete data that leads to an infinitely smooth
result without global optimization. It combines the flexibility of Binary Space Partitions Trees with the statistical
robustness of Smooth Transition Regression Trees. The construction of the tree is straightforward and easily
controllable, using error-driven metrics or external constraints. Moreover, it leads to a concise representation.
Applications on synthetic and real data, both scalar and vector-valued demonstrated the effectiveness of this

approach.
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Figure 1: Approximation of a mexican-hat radial function with a level 10 BSP-Tree.

1 Introduction

Approximation of discrete data constitutes a fundamental
step in modeling, analysis and visualization. It received a
lot of attentions in the last decade, and many elaborate
schemes have been devised, using techniques from optimiza-
tion theory to statistical modeling. However, very few adapt-
ive and efficient methods for such tasks combine simplicity
and smooth results. This work proposes a simple approxim-
ation scheme based on Binary Space Partitioning (BSP) and
Smooth Transition Regression Trees.

The BSP space subdivision is naturally represented by a
binary tree, named BSP-Tree, and was introduced by Fuchs,
Kedem and Maylor in [7]. It is today recognized as a very
useful tool, since it is extremely simple and flexible. Bin-
ary partitioning tree is also a very suitable statistical tool,
since it could work as a scheme to represent decision rules.
In this context, it has been widely used to classification and
regression applications through a technique called Classific-
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ation and Regression Tree (CART) Analysis [3]. In the last
decades, the interest in CART analysis has increased a lot,
mainly for classification applications [18] [19]. Indeed, re-
gression trees are very simple to interpret and to model: it
subdivides the input space into a set of rectangles and fits a
constant in each one.

However, in CART models, finding the best separation
hyperplane to fit the data in terms of least squares is compu-
tationally infeasible. In order to obtain the model quickly, a
greedy approach is generally adopted, fixing the hyperplane
always perpendicular to some canonical vector and choosing
the cutting point by some heuristic strategy. Thus, the result-
ing binary partition tree corresponds to a variation of the so
famous KD-Tree [13].

Another CART disadvantage is that the regression func-
tion is not differentiable on the border of the rectangular re-
gions. To solve this problem, Rosa et al. proposed in
other tree regression model that combines the CART model
with the Smooth Transition Regression (STR), which is used
in non-linear time series analysis [8]]. This new tree model,
called the Smooth Transition Regression Tree (STR-Tree),
substitutes the indicator function on the CART regression
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model by a smooth fuzzy membership function. It has also
been applied to time series analysis with multiple-regimes
[17]. However, similarly to the CART model, it restricts the
hyperplanes to be axis-aligned, reducing the flexibility of the
approximation.

Contributions In this work we propose a modification of
the STR-Tree to obtain a simple and fast approximation
scheme. It can be considered as a hierarchical plane-basis
function modeling (similarly to radial-basis functions [4]),
inheriting both the flexibility of BSP and the smoothness
of STR-Trees. Moreover, it does not require global optim-
ization while being infinitely smooth. The tree construction
is easily controllable, using error-driven metrics or external
constraints, and generally leads to concise representations.
We apply this new scheme to vector field and scalar field re-
construction from sparse data.

Paper outline. Section 2] discusses the BSP-Tree and the
CART and STR-Trees regression schemes. Section [3] intro-
duces a new method based on STR-Trees to smooth func-
tion approximations. Section[dshows the results. And finally,
section 5] concludes the work and proposes future directions.

2 Previous and related works

In this section we discuss three kinds of trees related to
this work: the BSP-Tree, the CART and the STR-Tree.

(a) Binary Space Partition Trees

The BSP technique is a simple and efficient method to
adaptively subdivide an initial given n-dimensional domain
S C R™ into convex sets in order to match the geometry
of a given set of input points. Fuchs, Kedem and Maylor
in [[7] proposed the BSP-Tree representation for this kind of
space subdivision. The BSP-Tree construction is a process
that takes the initial space S and divides it into two new sub-
spaces by a hyperplane that intersects its interior. These two
new subspaces can both be partitioned by other hyperplanes
and recursively this process continues until some stop cri-
terion is achieved. For a hyperplane in n-dimensional space
we mean a (n — 1)-dimensional subspace that divides the
original space into two half-spaces. For example, in three-
dimensional spaces, the “hyperplane” is a plane and in two-
dimensional spaces it is a line. BSP-Tree should be construc-
ted in such a way that the convex regions on the leaves could
capture better the information data for the points that are
inside them. And the strategy for choosing the subdividing
hyperplane and the stop criteria are application dependent.
Figure 2] shows a BSP-Tree for a space partitioning.

BSP-Tree has been applied to hidden surface removal [7],
image processing [12, 6], solid modeling [[16}[5]], point-based
processing and geometry compression 2]], just to
cite a few.

A KD-tree is a specific kind of a BSP-Tree since when the
splitting hyperplanes are axis-aligned, while in BSP-Trees,
the splitting hyperplanes can be in an arbitrary direction.
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Figure 2: Two level BSP-Tree example.

(b) Classification and Regression Trees

In statistical learning, tree based methods generate simple
and powerful models for classification and regression [9].
The most popular tree based method is the CART (Classi-
fication and Regression Tree) [3]. In the CART model, the
regression function consists in a sum:

L
fx) =) aillx e R, (1)
1=1

where c¢; are constants, R;,7 = 1... L are the rectangular re-
gions obtained from the binary partitioning tree construction
with axis-aligned hyperplanes, and I is an indicator function
(that is equal to 1, when the argument is true, and is equal
to 0 otherwise). In other words, the CART model associates
to each rectangular region a constant value. In this way, the
response value of the estimated function when the point x
is in the region R; is ¢;. Once the rectangular regions R;’s
are given, the best constants ¢;’s are just the average of all y;
in the corresponding region, when the criterion is the min-
imization of the sum of the squared errors Y (y; — f(x;))%
Figure 3] shows an example of an estimated regression func-
tion, the height for each region corresponds to the value of

¢;. For more details about the CART models see [3].

Figure 3: Two level CART regression function example.

>

(¢) Smooth Transition Regression Trees

The STR-Tree model, proposed by Rosa et al. in [17],
takes advantage of much of the CART structure presented
above, but substitutes the sharp splits of the CART model

The corresponding work was published in the proceedings of the Sibgrapi 2008 pp. 230-235| IEEE Press, 2008.
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Figure 4: G smooth transition function for different values of \.

by smooth splits. In the STR-Tree regression model the
indicator function I in equation [1]is substituted by a logistic
function, parameterized by A > 0, b € Rand j = {1,...n},
defined as:

1

e O

where the e; is the 4t canonical vector. Consider the
simplest tree with two leaf nodes, then the regression func-
tion in the STR-Tree model is written as:

G(x; A b, j) =

f(x) = coG(x5A0,5) + cr(1 = G(x5 A, b, ).

The parameter A controls the smoothness of the transition
from one node to the other. Figure ] shows several examples
of the G function for several values of .

Consider a full STR-Tree model with depth d, then the
number of leaves is L = 2% and the number of parent nodes
is Z?:Ol 2¢. Then, given a rectangular partition of the initial

domain, the STR-Tree regression function is defined as:

L
Fx) = eiBi(x;1), 3)
=1

where 1 represents all the parameters used to define the
function G for each parent node p, they are: the value of A,
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Figure 5: Blending functions construction based on the STR-Tree.
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Figure 6: Approximations 4 samples from a level 2 KD-Tree, for
different values of \.

the split canonical direction e;, and the value of b,,. For the
case when d = 2, one can write:

BI(X;T/}) = G(Xa )‘laejubl)G(X’ )‘27ej2?b2)
BQ(X;w) = G(X, /\1,ej1,bl)(l—G(X,/\Q,ejz,bQ))
Bs(x;) = (1-G(x, M1, €5,,b1))G(x, A3, €5, b3)
Ba(x;1))

-
= (1—G(X, )‘1a ejl’bl))(]-_G(X’ )‘27ej2’ bQ))
(

where 1/) = )\1, )\2, )\3, €;,,€5,,€4;, b17 b27 bg) Figure
illustrates how these blending functions B; are constructed,
and Figure [f]illustrated this blending function when varying
parameter A of GG. Notice that such construction naturally
defines a partition of unity [[1]].

In [[I7] the authors propose to use a least squares approach
in order to determine the better ¢; that minimize the sum of
the squared residuals for all input points, once the rectangu-
lar partition of the space is given.

3 Smooth transition BSP approximations

Until now, the STR-Tree has been applied basically to
non-linear regression analysis. We propose here a modific-
ations of those to adapt them to graphics applications. Such
modifications intend to capture better the geometry of the
input points, using application-dependent heuristics for de-
termining the split plane. Note that, with the BSP framework,
such plane can have arbitrary direction. This flexibility on the
tree allows a very simple regression function construction. In
addition, in order to accelerate the regression function evalu-
ation, we propose the use of a other fuzzy membership func-
tions to accelerate the evaluation.

(a) Problem description

Given a set of N points P = {x1, Xa, ..., Xy}, where all
these points are on the box [0, 1]™. Assume that to each point
x; is associated to an attribute vectors y; € R™, m > 1. Let
A denote the set of all attribute vectors {y1,y2,...,¥n}-
We would like to obtain a regression function that describe
the relationship between x and y.

(b) The regression function

Suppose that a BSP-Tree that represents the binary space
partition of the initial domain [0, 1]™ into L convex regions
Ri,..., R is given. We can define the regression function
in the same manner of the STR-Tree model by substituting,
on each internal node p of the tree, the directions €, by
unitary vectors wy,. In this way the fuzzy membership func-
tions is controlled by the distance to the corresponding plane
(W;X —b).
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(f) Level 1.

(g) Level 3.

(h) Level 5.
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(i) Level 7. (j) Level 9.

Figure 7: Approximation of the radial function of Figurewith KD-Trees (top) and BSP-Trees from the points distribution (bottom), A = 10.
The BSP trees better respects the radial nature of the function, in particular in diagonal parts.

G and the regression function then follow:

1
G (5 Ap, bp, wp) = 14 e Mw(whx—b)’
L
f(x)= ZCiBi<X§ Y).
i1

Note that in our formulation, we also substitute the scalar
constant ¢; by a constant vector c; since we would like to
reconstruct not only scalar fields (as it is done in the CART
and STR-Tree models) but also vector fields. This function
has a nice dependence on parameter \ (see Figure|[l).

In our scheme, similarly to CART, the value of c; is the
average of the y; values of the corresponding points §; inside
the convex region R;.

(¢) Function evaluation

To evaluate the constructed function, one has to traverse
recursively the BSP-Tree in order to build the blending func-
tions for each leaf node. Note that all the internal nodes have
to be traversed because of the shape of GG, which is close to
zero (but not equal to) when the distance to the plane is a
large negative number and is close to one (but not equal to)
when the distance to the plane is a large positive number.

In order to accelerate the evaluation process we propose
the use of a polynomial of degree 5 that approximates G.
Such function will be named G*, it depends on the distance
to the corresponding split plane and on the value of a para-
meter A:

0 ifd < —5
G*(x Awb) =1 1 ifd> 3

1 15X 5A3 3\° ;

s+Higd—%-d*+3-d° otherwise

where d = w'x — b. In this way, if the point x is far from the
plane by more than 1/, the value of G* at this point will be
1, as a consequence, the value of (1 — G*) at the same point
will be 0 (and vice-versa). So, the tree traversal could stop at
this node, accelerating the evaluation.

(d) Derivatives

In several scientific simulation or graphics applications it
is necessary to compute the derivatives of the approximate
function. For example, for vector field reconstruction one
would like to compute the curl or the divergent of the field
at the given point, and for scalar field reconstruction the
gradient. To evaluate the derivative of the regression function
in this scheme, we have to evaluate the derivative of an
average of the blending functions, which is calculus exercise.
The algorithm to do this evaluation efficiently is also based
on the BSP-Tree traversal. To do so, it recurses to compute
the vector values of both the field and its derivatives, since
they are needed for the multiplication derivation rule.

Observe that the proposed regression function is C*°
everywhere when the blending function is constructed by the
use of the G fuzzy membership function, and is C? every-
where when the fuzzy membership function is G*.

(e) Building the BSP-Tree

The first step in our algorithm is to find a partition of the
initial domain into convex regions by the use of a BSP-Tree.
The subdivision process relies on two criteria: how to find
the best separating hyperplane and when to stop the process
of subdivision.

Three types of heuristic criteria are generally used to
control the separation hyperplane at each level: fitting to
the input points’ distribution in the cell; adapting to the

The corresponding work was published in the proceedings of the[Sibgrapi 2008| pp. [230-235| IEEE Press, 2008.
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(a) Input field.

(b) Magnitude.
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(c) Phase.

Figure 8: Approximation of a real vector field from particle-image velocimetry with a level 11 BSP: the color map represents the magnitude

of the field (A = 11.

current approximation error; or using external variables such
as global density targets.

From our experiments, we suggest to determine the sep-
arating hyperplane based on the input points: perpendicular
to the first principal component that passes to the center of
mass of the input points contained on the given region. An-
other criteria when the dimension of the input points x is
equal to the target vectors y is to use the hyperplane parallel
to the average of the target vectors that passes to the center
of mass of the input points contained on the region.

Different criteria can be used to establish when to stop the
subdivision, for example: the minimum number of points in
each leaf region, the maximum level of the tree, a maximum
error tolerance on the input points, or a combination of these
three. In this work, we use the minimum number of points
per leaf region.

4 Results

We tested the proposed approximation in different con-
texts. First, we experimented a synthetic reconstruction from
uneven sampling with different values of A (see Figure [I).
We observe that the value A = 10 is a reasonable choice.
We confirmed on other tests that it is a good estimate, and
set A = 10 for scalar approximations. Then, we compare
our approach on scalar fields with KD-tree based techniques
such as STR-Trees on the same data set (see Figure [7] and
Table [T). We can observe the superiority of BSP that bet-
ter captures the diagonal features of the function. We fur-
ther compare our approach for vector field with quadtree-
based techniques such as multiple partition of unity implicit
for vector fields [10] (see Figure EI) On this simulated vec-
tor field, the proposed technique outperforms quadtree-local
polynomial approaches. Moreover, with the compact support
proposed in Section the evaluation is faster than poly-
nomial approaches: with GG at level 11, the construction took
7.3e — 4 seconds, against 1.2e — 5 for G*. We finally tested
our technique on real vector field measured from particle im-

KD-tree  BSP
# leaves 11505 10809
Maximal tree level 17 16
Magnitude mean relative error | 0.3860  0.3449
Phase mean relative error 0.3342  0.3207

Table 1: Comparison with KD-tree approximations on the example
of Figurelz with A = 1.5, error tolerance 107> and 11652 input
samples.

age velocimetry (see Figure 8], showing the stability of the
method even in the presence of noise.

To further test the possibilities of our smooth transition
approximations, we compute the derivatives of reconstructed
vector fields. In particular, we experiment on a synthetic
vector field with six vortices and show the approximate
divergence and curl computed from a random sampling (see
Figure[T0). We check that those derivatives stress the features
of the field. Furthermore, we checked the divergence of the
velocities obtained from a numerical fluid simulation [14],
which should be close to zero (see Figure [TT).

Finally, we apply our technique to curve reconstruction,
similarly to RBF techniques [4]. From a curved sampled
with points p; and normals n;, we create two point sets
{p; — en;} and {p + en, }, and associate them to values —1
and +1 respectively. The reconstructed distance fields are
shown in Figure [I2] We can observe that the field is robust
far from the points and do recover topological features of
the curve, although the singularities almost induce spurious
components in the reconstruction.

5 Conclusion and future works

In this work, we introduce a smooth approximation mech-
anism that does not require global optimization. It relies on
a combination of binary-space partition and smooth trans-
ition regression trees, leading to a simple plane-basis func-
tion modeling. We show results on scalar and vectorial ap-
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proximations, outperforming previous approaches. We fur-
ther demonstrate applicability in specific contexts such as
vector fields’ feature detection or curve reconstruction.

We intend to extend this work in higher dimensions,
which is straightforward in the implementation. Moreover,
we plan to further study BSP refinement criteria based on
local, non-linear optimization. Finally, the transition para-
meter A may be adjusted to each BSP interior node, which
may lead to even greater adaptation.

Figure 9: Relative error of the magnitude the field ofFigure for
different values of A and comparing with [10)].
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(a) Input samples. (b) Reconstructed field. (c) Divergence approximation. (d) Curl approximation.

Figure 10: Divergence and curl of the approximation on a synthetic vector field with six vortices, using level 11 BSP: the vortices are clearly
identified.
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(a) Input samples. (b) Reconstructed field. (d) Divergence approximation.

Figure 11: Divergence of a vector field from a fluid simulation, using [I4)] ( A = 125): the null divergence of the field is well respected.

e s. -3
(a) Input data. (b) BSP tree (level 11). (c) Approximation (A = 10). (d) Approximate distance.
(e) Input data. (f) BSP tree (level 11). (g) Approximation (A = 2.85). (h) Approximate distance.

Figure 12: Curve reconstruction from a scalar plane-based function modeling.

Preprint MAT. 11/08, communicated on May 19¢”, 2008 to the Department of Mathematics, Pontificia Universidade Cat6lica — Rio de Janeiro, Brazil.



	Introduction
	Previous and related works
	Binary Space Partition Trees
	Classification and Regression Trees
	Smooth Transition Regression Trees

	Smooth transition BSP approximations
	Problem description
	The regression function
	Function evaluation
	Derivatives
	Building the BSP-Tree

	Results
	Conclusion and future works
	Bibliography

