
Robust adaptive meshes for implicit surfaces

AFONSO PAIVA1 , HÉLIO LOPES1 , THOMAS LEWINER1 AND LUIZ HENRIQUE DE FIGUEIREDO2

1 Department of Mathematics — Pontifı́cia Universidade Católica — Rio de Janeiro — Brazil
2 IMPA — Rio de Janeiro — Brazil

{apneto, lopes, tomlew}@mat.puc--rio.br. lhf@visgraf.impa.br.

Abstract. This work introduces a robust algorithm for computing good polygonal approximations of implicit sur-
faces, where robustness entails recovering the exact topology of the implicit surface. Furthermore, the approximate
triangle mesh adapts to the geometry and to the topology of the real implicit surface. This method generates an
octree subdivided according to the interval evaluation of the implicit function in order to guarantee the robustness,
and to the interval automatic differentiation in order to adapt the octree to the geometry of the implicit surface. The
triangle mesh is then generated from that octree through an enhanced dual marching.
Keywords: Implicit Surface. Dual Marching Cubes. Robust Algorithms. Geometric Modelling.

Figure 1: Toric isosurface extraction: our algorithm extracts a valid surface with adaptive triangulation. It guarantees the green parts of the
surface, and the ambiguity of the other parts is resolved with a small number of refinements.

1 Introduction
Implicit surfaces provide powerful primitives for geomet-

ric modelling. However, computing good polygonal approx-
imations remains an important problem. An implicit surface
is the set of solutions of an equation f(x, y, z) = 0, where
f : Ω ⊆ R3 → R. For well-behaved functions f , this set is
indeed a manifold surface.

The simplest and most flexible polygonal approximation
abides triangle meshes, since they are easy to represent ef-
ficiently and they suit also well for rendering with current
graphics hardware. The criteria for good approximations in-
volve robustness and adaptation. Robustness means that the
mesh captures exactly the topology of the surface, guaran-
teeing the representation of each connected component in Ω
and their genus. Adaptation means that, with a reduced num-
ber of triangles, the geometry of the surface is described

Preprint MAT. 14/06, communicated on May 14th, 2006 to the Department
of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
The corresponding work was published in the proceedings of the Sibgrapi
2006, pp. 205–212. IEEE Press, 2006.

efficiently. In particular, the mesh should place large trian-
gles in regions of low surface curvature and smaller trian-
gles in regions of high surface curvature. Moreover, the tri-
angles should have a good aspect ratio since thin triangles
(also known as slivers) induce numerical instability for geo-
metric processing, in particular for rendering and derivative
estimations.

In this paper, we describe an algorithm that computes a
robust and adaptive triangular approximation for an implicit
surface given by a formula. The algorithm combines interval
arithmetic and automatic differentiation to ensure both ro-
bustness and adaptation. The algorithm first explores the do-
main Ω adaptively using an octree to locate the surface. This
exploration uses interval arithmetic to eliminate octree cells
that are guaranteed not to intersect the surface, driving the
octree towards identifying all connected components. Com-
bined with automatic differentiation, interval arithmetic pro-
vides interval estimates for the gradient, which allows locat-
ing regions of low curvature and detecting topological am-
biguities. A triangle mesh is extracted from the dual of the

http://www.sibgrapi.ufam.edu.br
http://www.sibgrapi.ufam.edu.br
http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2006.40

A. Paiva, H. Lopes, T. Lewiner and L.-H. de Figueiredo 2

octree [21], and then smoothed to avoid slivers. This tech-
nique produces a good triangle mesh that carries topological
and geometric guarantees. Figure 1 shows an example of the
approximation of the implicit surface

(1.5−
√

(x2 + y2))2 + z2 − (1.35)2 = 0,

running our method in the cube Ω = [−3.1, 3.1]3. Further
examples are given in Section 5.

This paper extends to surfaces the work of Lopes et
al on implicit curves [13]. Section 2 reviews other related
works. A brief account of interval arithmetic and automatic
differentiation is given in Section 3, followed by the details
of the complete algorithm in Section 4.

2 Related work
There exist mainly two types of data for defining implicit

surfaces: discrete or continuous. Discrete data usually re-
sults from measurements or numerical simulations, which
increase the interest for visualizing such data in medical
and scientific applications. Discrete data contains informa-
tion only at the vertices of a grid and requires interpolation
schemes for the other points. In contrast, continuous data
can be evaluated at arbitrary points of Ω. Implicit surfaces
given by continuous data are especially relevant for geomet-
ric modelling for at least two reasons: they provide powerful
primitives for modelling, and express naturally many geo-
metric operations such as deformations, interpolations and
derivation mechanisms. Classical methods for the contin-
uous case sample the function at the vertices of a regular
grid and apply algorithms for the discrete case. However, the
knowledge of the continuous function may help in generat-
ing adapted grids.

Extensions of Marching Cubes. Probably the earliest and
most influential work on approximating implicit surfaces
from discrete data remains the Marching Cubes algorithm
by Lorensen and Cline [14]. Marching Cubes works on a
cubical grid and identifies cells that intersect the surface by
testing the signs of the values at the eight vertices of each
cube. If the signs are not all the same, then the surface is ap-
proximated within the cell by planar patches: the signs of the
eight vertices form an 8-bit word which serves as a key for
the configuration of the cube, and a lookup table stores the
patches for each possible configuration.

The main issues in this approach are ensuring consistency
of the approximation across neighbouring cells and resolv-
ing topological ambiguities. Many papers have been written
on improving Marching Cubes along these lines, and early
papers are discussed in a survey by Ning and Bloomenthal
[18]. In this paper, we use a recent implementation of March-
ing Cubes by Lewiner et al. [12] that introduced topological
guarantees.

Adaptive strategies. The earliest papers that perform adap-
tive approximation of implicit surfaces are due to Bloomen-
thal [3], who used cubical cells, and to Hall and Warren

[7], who used tetrahedral cells. Both papers took care to
avoid cracks on the approximating mesh. Hall and Warren
also tried to eliminate slivers by projecting mesh vertices
that are near the surface. Several other authors discuss adap-
tive subdivision and refinement [20, 23, 2, 6]. Hartmann [8]
described a continuation algorithm that produces a regular
mesh, extended by Karkanis and Stewart [25] and Araujo and
Jorge [1] to adaptive meshes. Quite recently, Ho et al. [9] ex-
tended Marching Cubes to generate adaptive approximations
that preserve sharp features and provide topological consis-
tency. We used a different approach to ensure crack-free ap-
proximations by the use of dual grids, pioneered by Ju et
al. [10], Schaefer and Warren [21], and Nielson [17].

Robustness. Very few methods guarantee robustness in the
continuous case. Stander and Hart [22] used interval methods
to guarantee the correct topology of polygonal approxima-
tions during interactive modelling. Their use of Morse the-
ory is further developed for implicit surfaces in the work of
Boissonnat et al. [4]. Lopes et al. described a robust method
for implicit curves [13], which motivated the present work.

3 Numerical tools
The main numerical tool that we shall use to ensure

both robustness and adaptation is the combination of inter-
val arithmetic [15] for localizing isolated pieces of the mesh,
and automatic differentiation [24, 15, 19, 11] for guarantee-
ing the topology of each piece and providing geometric adap-
tation. In this section we briefly review how these tools work.

Interval arithmetic. Given a function f : Ω ⊆ R3 → R
and a rectangular box B contained in Ω, interval arithmetic
computes an interval F (B) ⊆ R such that

F (B) ⊇ f(B) = {f(x, y, z) : (x, y, z) ∈ B}.

In other words, interval arithmetic provides a reliable es-
timate for the complete set of values taken by f in B. It
does so by extending all basic arithmetic operations and
elementary functions to work on intervals instead of real
numbers. To compute the interval estimate F (B), we write
B = X ×Y ×Z, where X , Y , and Z are intervals, and sim-
ply perform the same operations needed to evaluate f , except
that we use the interval version of those operations and that
we operate with intervals X , Y , Z instead of numbers x, y, z.
By carefully rounding interval extremes outward, we obtain
interval estimates that are reliable even when computed in
floating-point machine arithmetic, which is subject to round-
ing errors.

Implicit surface test. The power of using interval estimates
in approximating an implicit surface S given by f(x, y, z) =
0 is that they provide the following reliable test for B not
containing any part of S: if 0 6∈ F (B), then 0 6∈ f(B). This
test, which is a simple consequence of F (B) ⊇ f(B), is
used as a stopping criterion for an octree subdivision of Ω
(see Section 4). Note that this is not an approximate state-
ment: 0 6∈ F (B) is a proof that B does not intersect S; there

The corresponding work was published in the proceedings of the Sibgrapi 2006, pp. 205–212. IEEE Press, 2006.

http://www.sibgrapi.ufam.edu.br
http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2006.40

3 Robust adaptive meshes for implicit surfaces

Figure 2: Geometry adapted meshing of the heart surface: (2x2 +
y2 + z2 − 1)6 − (0.1x2 + y2)z3

is no sampling or guessing involved. On the other hand, the
converse does not necessarily hold: 0 ∈ F (B) does not im-
ply that B intersects S, because F (B) may be strictly larger
than f(B). We only require that interval estimates satisfy
F (B) ⊇ f(B); we do not require that F (B) = f(B). Find-
ing the exact f(B) is a global optimization problem; find-
ing the estimate F (B) is simply requires evaluating an inter-
val expression and is thus performed efficiently. Moreover,
interval estimates do get better as B shrinks. Thus, testing
whether 0 6∈ F (B) provides a fast and robust rejection test.

An octree exploration of Ω as described above is spatially
adaptive, in the sense that it is guided by the location of S
in Ω, To allow the exploration to depend also on the curvature
of S, being geometrically adaptive as the example of Fig-
ure 2, we need to estimate how the curvature of S varies
inside an octree cell. This can be done by using an interval
estimate for the components of the gradient of f , because
this gradient is normal to S.

Automatic differentiation. There are three main alterna-
tives for computing the gradient of f : symbolic differenti-
ation, which generates expressions for the partial derivatives
of f ; numerical differentiation, which finds approximations
for the values of these partial derivatives; and automatic dif-
ferentiation, which combines the speed of numerical differ-
entiation with the accuracy of symbolic differentiation. Au-
tomatic differentiation works by defining an arithmetic for
tuples (u, ux, uy, uz), where u represents the value of a func-
tion of x, y, z, and ux, uy , uz represent the values of its par-
tial derivatives. For each basic arithmetic operation and for
each elementary function, we can write a corresponding op-
eration or function that operates on these tuples according to
rules of calculus. For instance,

sin(u, ux, uy, uz) = (sin u, ux cosu, uy cosu, uz cos u)

exp(u, ux, uy, uz) = (exp u, ux exp u, uy exp u, uz exp u)

To evaluate a complicated expression, we simply write it as a
sequence of primitive operations and follow the rules. At the
end, we get the value of the expression and the values of all
its partial derivatives. These derivatives are not approximate:
the only possible errors are rounding errors, and these will
be significant only when they are already significant for
evaluating the function. This makes automatic differentiation
at least as accurate as symbolic differentiation (and often
more accurate). At the same time, automatic differentiation
can be much more efficient than symbolic differentiation
because obvious common sub-expressions are automatically
identified and evaluated only once (see the rules above). In
our algorithm, we use interval estimates for the gradient of f ,
obtained by applying the automatic differentiation formulas
on tuples of intervals instead of tuple of numbers. The width
of these interval estimates helps building a geometrically
adaptive octree.

4 Robust adaptive polygonisation
This section details first how we combine these numer-

ical tools to generate an adapted octree, and then how we
extract an approximation of the implicit surface given by
f(x, y, z) = 0 in Ω. We assume that f is twice continuously
differentiable (f ∈ C2) and admits zero as a regular value,
which means that the gradient of f does not vanish on the
implicit surface. This is actually a generic assumption, that
is, it is restored by infinitesimal perturbations.

(a) Building the octree

Our algorithm starts with the whole domain Ω, and as-
signs it to the root of the octree. Then, at each step of the
subdivision, it checks whether the cell n, having domain the
box Bn, must be subdivided. If so, the algorithm recurses on
the subdivisions of n. A cell must be subdivided if it satisfies
one of the three following criteria: connected component cri-
terion, topology criterion and the geometry criterion. These
criteria are derived from the interval evaluation F (Bn) and
∇F (Bn) of both the function f and its gradient ∇f on the
box Bn.

Connected component criterion. This criterion selects the
cells of the octree that may contain a patch of the implicit
surface, and discards the cells that surely do not intersect the
surface. As detailed in Section 3, this can be tested robustly
with the interval evaluation F (Bn) of f on the box Bn:

if 0 /∈ F (Bn) then discard(n)

This test is robust, meaning that it is guaranteed not to
discard any connected component of the implicit surface
f−1(0) in Ω: one of its points (x, y, z) would be contained
in a cell n ((x, y, z) ∈ Bn), and thus 0 = f(x, y, z) ∈
f(Bn) ⊆ F (Bn), which avoids discarding n.

Topology criterion. A connected component of the implicit
surface can have arbitrary genus, in particular it may contain
tunnels. The previous criterion alone does not guarantee to

Preprint MAT. 14/06, communicated on May 14th, 2006 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

A. Paiva, H. Lopes, T. Lewiner and L.-H. de Figueiredo 4

Figure 3: The effect of the geometric criterion on the smile surface (y − x2 − y2 + 1)4 + (x2 + y2 + z2)4 − 1 = 0. The mesh is uniform
without this criterion (left), while it tracks regions of higher curvature when kmax increases, here from kmax = 0.5 (middle) to kmax = 0.95
(right).

recover tunnels. However, combined with the topology crite-
rion, it can safely discard the empty parts of these tunnels. If
a box B contains a tunnel, then the gradient of f varies inside
B from one vector (nx, ny, nz) at point (x, y, z) to its oppo-
site (−nx,−ny,−nz) on the facing point [4]. Therefore, the
coordinates Ix, Iy, Iz of the interval estimation of ∇f con-
tain opposite values. Since Ix, Iy, Iz are intervals, 0 ∈ Ix,y,z .
The topology criterion is thus:

if (0, 0, 0) ∈ ∇F (Bn) then subdivide(n)

Geometry criterion. To approximate correctly the geom-
etry of the implicit surface with a reduced number of tri-
angles, we need to allow small triangles only in regions of
high curvature. The curvature can actually be estimated from
∇F (Bn): the curvature reflects the variation of the gradi-
ent. Therefore, high curvatures implies that the coordinates
(Ix, Iy, Iz) of ∇F (Bn) are wide intervals. Given a user
defined threshold kmax and choosing Diam(Ix, Iy, Iz) =
max {|Ix|, |Iy|, |Iz|} for measuring the gradient variation,
the geometry criterion is:

if Diam
(
∇F (Bn)
‖∇F (Bn)‖

)
> kmax then subdivide(n)

Note that the topology criterion guarantees that 0 /∈
‖∇F (Bn)‖, which validates the above expression. The pa-
rameter kmax actually weights the geometric adaptation, as
illustrated on Figure 3.

Algorithm end. The above criteria may induce a large
number of subdivisions, even infinite if the implicit surface
has infinite genus (which is a highly non generic case). More-
over, since the interval evaluation F (B) only contains the
exact image f(B) with conservative rounding error, subdivi-
sions may be required on empty areas when numerical pre-
cision decreases. In practice, the algorithm subdivides the
octree until a given maximal level, which may correspond to
the size of the pixel for rendering applications, minimal size
of the triangles for geometry processing, or numerical pre-
cision for simulation. However, the above criteria still point

out which parts of the implicit surface are not guaranteed,
while guaranteeing the approximation of the others. This ro-
bust behaviour allows stopping the subdivision of the octree
before the given maximal level if the approximation is al-
ready validated (see Figure 4).

(b) From octree to dual grid

To generate the mesh we use an enhanced version of the
Schaefer–Warren method [21]. Like them, we first create the
dual grid of the octree, which is the topological dual of the
octree: the vertices of the dual grid are the centre points of
the octree cells, and the edges correspond to the adjacency
between these cells. This way the each volumetric cell of
the dual grid is associated with an interior vertex of the
octree. Figure 5 illustrate this duality in the simpler case of
quadtrees.

Figure 5: A primal quadtree (thin black) and its dual grid (thick
green).

In our method dual grid creation does not require any
explicit neighbour representation in the octree data structure.

The corresponding work was published in the proceedings of the Sibgrapi 2006, pp. 205–212. IEEE Press, 2006.

http://www.sibgrapi.ufam.edu.br
http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2006.40

5 Robust adaptive meshes for implicit surfaces

Figure 4: On complex models, such as the two torus surface g(10x, 8y − 2, 10z, 13) · g(10z, 10y + 2, 10x, 12) + 1000 = 0 with
g(x, y, z, c) = (x2 + y2 + z2 + c)2 − 64(x2 + y2), the topology may not be guaranteed at a given resolution. At level 6 (left), our
algorithm marks ambiguities regions (in red), and subdivides them, here stopping at level 7 (centre) and 8 (right) where the whole surface is
robustly guaranteed.

Since the dual grid is generated once for the whole octree,
this task is further optimized by traversing the octree from
the root maintaining at each step the adjacencies of the
nodes.

(c) Mesh generation

The dual grid is then a coherent set of dual cells meeting
at dual vertices, dual edges and dual faces. From the dual
grid, we extract a mesh approximating the implicit surface
by creating triangles in each of these dual cells. We use the
public code of Lewiner et al. [12] to do so, which suits well
here since the cells are convex and have at most 8 vertices.
This algorithm will thus guarantee a manifold output with
no crack, while working only locally. The mesh can be then
further optimized in terms of aspect ratio by an inexpensive
process described at the end of this section.

f (v) = ftl f (v) = ftr

f (v) = fdl f (v) = fbr

f (v) = fl

f (v) = ftr

f (v) = fbr

Figure 6: Key generation for the 2D lookup table: for the regular
Marching Cubes case (left), the key is generated with the four
entries (ftr, ftl, fbl, fbr). In the dual case (left), the value of the
higher level node (the left one) has to be duplicated to generate a
four–entry key (ftr, fl, fl, fbr).

Cell key generation. Lewiner et al. [12] use a lookup table
L[] that extends the one of the original Marching Cubes [14]:
for each cube, they compute a key k from the values of its

eight vertices and creates the triangles of the approximating
mesh from the lookup table match L[k] of the key.

The only difficulty here is to generate a key with eight en-
tries since the dual cells may have less than eight vertices.
This occurs when the dual vertices correspond to octree cells
{ci} of different levels (see Figure 6). If we subdivided these
octree cells until they had all the same level, the dual cell
would be a cube. The key for the lookup table is then gen-
erated by duplicating the values of the dual vertices which
belong to the same octree cell ci. In practice, we compute all
the keys directly when generating the dual grid, without any
extra octree subdivision.

Triangle creation. We use this key in the lookup table,
and create the indicated triangles. Note that the tests of the
asymptotic decider of Nielson and Hamann [16] are suffi-
cient to guarantee the manifoldness of the results, but in case
the subdivision of the octree is limited in space, the lookup
table of Lewiner et al. [12] should recover the topology of
the intersection better. The vertices of the indicated triangles
can be computed exactly on the implicit surface, using a sim-
ple bisection method either along the dual edge, or along the
normal estimated by automatic differentiation.

Further mesh improvements. The above process already
guarantees a correct topology and an adaptive distribution
of triangle sizes along the mesh. Although the mesh quality
already passes the Marching Cubes one (see Figure 7), it
can be further improved by sliding its vertices to have better
shaped triangles. We use a technique similar to the one used
by Botsch and Kobbelt [5]: for each vertex v, its normal ~nv

and the barycentre bv of its star are computed. The vertex
is then shifted tangentially towards bv , which writes v ←
v + (~vbv − 〈 ~vbv| ~nv〉 · ~nv). The tangential movement avoids
strong shrinking, and the relaxation towards bv improves the
aspect ratio of the triangles. The vertices are then projected

Preprint MAT. 14/06, communicated on May 14th, 2006 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

A. Paiva, H. Lopes, T. Lewiner and L.-H. de Figueiredo 6

Figure 7: The Marching Cubes algorithm alone (left) generates many triangles which are not nicely shaped, as illustrated by the aspect ratio
histograms. On the cyclide surface: (x2 + y2 + z2)2− 2(x2 + r2)(a2 + b2)− 2(y2− z2)(a2− b2)+ (a2− b2)2 +6abrx = 0 with a = 10,
b = 2 and r = 2, it generated 11664 triangles, while the dual marching cubes (middle and right) generated only half of it (5396 triangles).
The quality of the triangles can then be improved by simple mesh processing (right).

back onto the implicit surface by the bisection mentioned
above (see Figure 7). Note that this process is applied on
all the vertices at once, and thus does not require adjacency
structure for the mesh.

5 Results
We checked the validity of our method on various models.

In particular, the robustness paradigm is clearly illustrated
on Figure 1: The red regions on this figure indicate that the
approximation obtained on that region is not guaranteed, al-
though the algorithm provides a valid global surface. The red
region marks that either the topology or the geometry crite-
rions on the corresponding primal node of the octree failed.
Observe on the left image that the obtained surface has genus
0 for that level of approximation (4). These ambiguities can
be solved by allowing more subdivision. Even if our algo-
rithm is conservative, as illustrated on Figure 4, the ambigui-
ties are solved in practice with only a few subdivisions (until
level 6 and 8 for Figures. 1 and 4).

The proposed geometric criterion produces well adapted
meshes, as the one of Figure 2, with a reduced number of
triangles (see Table 1). Its effect is monitored by kmax, the
only manual parameter of our algorithm. Figure 3 shows
how the triangles concentrate on the regions of high curva-
ture when increasing this parameter. This adaptability can-
not be achieved directly by the Marching Cubes method, as
illustrated by Figure 7. On this figure, the histogram of the
aspect ratio (4

√
3·area

|ab|2+|ac|2+|bc|2) shows that the our method al-
ready produces high quality mesh, which can be improved
by the method of the end of section 4 Robust adaptive poly-
gonisation. Moreover, the quality of the mesh does not result
from a symmetry artefact, as illustrated on Figure 8.

Our algorithm handles nicely degenerated cases, such
as the singular points (pinch) of the tear drop model of
Figure 9. Even if we do not recover the feature, the algorithm
marks that the approximation needs refinements. The case
is similar for non–manifold surfaces, as the two intersecting
planes of Figure 10. The algorithm reconstructs a manifold
approximation, on which the non–manifold parts of the real

implicit object are marked as ambiguous.

6 Conclusion
This work addressed the problem of computing good

polygonal approximations of implicit surfaces. We proposed
a robust algorithm that can either guarantee the exact topol-
ogy of the implicit surface or point to the user ambiguous
parts, which can be solved by further refinements. The ro-
bustness is achieved by the combination of interval arith-
metic with automatic differentiation into adaptation criteria.
We then extract an approximate triangle mesh from this oc-
tree through a dual Marching Cubes algorithm. We finally
improve the quality of the triangles in the final mesh by sim-
ple and efficient geometry processing.

We do guarantee the topological consistency for mani-
folds: the mesh does not contain cracks and it does have the
correct genus. While we do not promise to handle all singu-
lar cases, our algorithm clearly show regions that may con-
tain singular points or curves. Since we are dealing only with
continuous data, as opposed to discrete data, we do not use
any heuristic. In particular, we can use bisection to locate,
with great accuracy, the intersections of the surface with the
boundary of a cell.

Acknowledgments
The Matmidia laboratory is sponsored by FINEP,

PETROBRAS, CNPq, and FAPERJ. The Visgraf is spon-
sored by CNPq, FAPERJ, FINEP, and IBM Brasil.

References
[1] B. R. de Araujo and J. A. P. Jorge. Adaptive polygo-

nization of implicit surfaces. Computers & Graphics,
29(5):686–696, 2005.

[2] R. J. Balsys and K. G. Suffern. Visualisation of implicit
surfaces. Computers & Graphics, 25(1):89–107, 2001.

[3] J. Bloomenthal. Polygonization of implicit surfaces.
Computer Aided Geometric Design, 5(4):341–355, 1988.

The corresponding work was published in the proceedings of the Sibgrapi 2006, pp. 205–212. IEEE Press, 2006.

http://www.sibgrapi.ufam.edu.br
http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2006.40

7 Robust adaptive meshes for implicit surfaces

Figure 8: Our algorithm does not suffer from symmetry artefacts. For example, on the chair surface (x2 + y2 + z2 − ak2)2 − b((z − k)2 −
2x2)((z+k)2−2y2) = 0 with a = 0.95, b = 0.8, and k = 5, it detects the same ambiguities and shows similar triangulations independently
on the cube position Ω: [−10.2, 5.8]×[−10.2, 5.8]×[−8, 8] (left), [−8, 8]3 (middle) or [−5.8, 10.2]×[−5.8, 10.2]×[−8, 8] (right).

Model kmax level # trian. # vert. aspect

Torus 4.9 6 7248 3512 92%
Tear drop 0.8 7 2590 1272 97%
Smile 0 6 25172 12588 55%
Smile 0.5 6 22408 11100 90%
Smile 0.95 6 4948 2320 85%
2 torus 1.9 6 17588 8652 92%
2 torus 1.9 7 39700 19212 88%
2 torus 1.9 8 83252 40228 87%
chair left 0.95 6 10564 5096 90%
chair mid 0.95 6 10564 5098 89%
chair right 0.95 6 10564 5096 89%
cyclide 1 5 5396 2528 85%
heart 1.2 6 9048 4068 78%
2 planes 0.1 7 24820 12416 99%

Table 1: Results on the illustrations of the paper. The aspect
column counts the triangles which have an aspect ration over 0.8.

Figure 9: The singularities of the teardrop surface 0.5x5+0.5x4−
y2−z2 = 0 are detected by our criterion, but the meshing does not
recover them completely.

[4] J.-D. Boissonnat, D. Cohen-Steiner and G. Vegter. Iso-
topic implicit surface meshing. In Symposium on Theory
of computing, pages 301–309. ACM, 2004.

[5] M. Botsch and L. Kobbelt. A remeshing approach to
multiresolution modeling. In Symposium on Geometry
Processing, pages 185–192. ACM/Eurographics, 2004.

[6] A. C. Filho, L. G. Nonato, M. Siqueira, R. Minguim and
G. Tavares. The j1a triangulation: an adaptive triangula-
tion in any dimension. Computers & Graphics, 30, 2006.

[7] M. Hall and J. Warren. Adaptive polygonalization of
implicitly defined surfaces. IEEE Computer Graphics and
Applications, 10(6):33–42, 1990.

Preprint MAT. 14/06, communicated on May 14th, 2006 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

http://www.mpi-sb.mpg.de/~botsch/
http://www-i8.informatik.rwth-aachen.de/
http://graphics.ethz.ch/~mbotsch/publications/sgp04.pdf
http://graphics.ethz.ch/~mbotsch/publications/sgp04.pdf

A. Paiva, H. Lopes, T. Lewiner and L.-H. de Figueiredo 8

Figure 10: Our algorithm always reconstructs a manifold surface,
even in the case of two intersecting planes xy = 0. However, the
non–manifold parts (in red) are detected by our criterion.

[8] E. Hartmann. A marching method for the triangulation
of surfaces. The Visual Computer, 14(3):95–108, 1998.

[9] C.-C. Ho, F.-C. Wu, B.-Y. Chen, Y.-Y. Chuang and
M. Ouhyoung. Cubical marching squares: Adaptive
feature preserving surface extraction from volume data.
Computer Graphics Forum, 24(3):537–545, 2005.

[10] T. Ju, F. Losasso, S. Schaefer and J. Warren. Dual
contouring of hermite data. In SIGGRAPH, pages 339–
346. ACM, 2002.

[11] H. Kagiwada, R. Kalaba, N. Rasakhoo and K. Spin-
garn. Numerical Derivatives and Nonlinear Analysis.
Plenum, New York, 1986.

[12] T. Lewiner, H. Lopes, A. W. Vieira and G. Tavares.
Efficient implementation of Marching Cubes’ cases with
topological guarantees. Journal of Graphics Tools,
8(2):1–15, 2003.

[13] H. Lopes, J. B. Oliveira and L. H. de Figueiredo. Ro-
bust polygonal adaptive approximation of implicit curves.
Computers & Graphics, 26(6):841–852, 2002.

[14] W. E. Lorensen and H. E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In
SIGGRAPH, pages 163–169. ACM, 1987.

[15] R. E. Moore. Interval Analysis. Prentice-Hall, 1966.

[16] G. M. Nielson and B. Hamann. The asymptotic de-
cider: resolving the ambiguity in Marching Cubes. Visu-
alization, pages 29–38, 1991.

[17] G. M. Nielson. Dual marching cubes. In Visualization,
pages 489–496. IEEE, 2004.

[18] P. Ning and J. Bloomenthal. An evaluation of im-
plicit surface tilers. Computer Graphics and Applications,
13(6):33–41, 1993.

[19] L. B. Rall. The arithmetic of differentiation. Mathe-
matics Magazine, 59(5):275–282, 1986.

[20] M. F. W. Schmidt. Cutting cubes: visualizing implicit
surfaces by adaptive polygonization. The Visual Com-
puter, 10(2):101–115, 1993.

[21] S. Schaefer and J. Warren. Dual marching cubes:
Primal contouring of dual grids. In Pacific Graphics,
pages 70–76. IEEE, 2004.

[22] B. T. Stander and J. C. Hart. Guaranteeing the topol-
ogy of an implicit surface polygonization for interactive
modeling. In SIGGRAPH, pages 279–286. ACM, 1997.

[23] L. Velho, L. H. de Figueiredo and J. Gomes. A unified
approach for hierarchical adaptive tesselation of surfaces.
ACM Transactions on Graphics, 18(4):329–360, 1999.

[24] R. E. Wengert. A simple automatic derivative evalu-
ation program. Communications of the ACM, 7(8):463–
464, 1964.

[25] T. Karkanis and A. J. Stewart. Curvature-dependent tri-
angulation of implicit surfaces. IEEE Computer Graphics
and Applications, 22(2):60–69, 2001.

The corresponding work was published in the proceedings of the Sibgrapi 2006, pp. 205–212. IEEE Press, 2006.

http://www.carva.org/thomas.lewiner
http://www.mat.puc-rio.br/~lopes
http://www.angelfire.com/moon/awilson/
http://www.mat.puc-rio.br/~tavares
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=marching_cubes_jgt.pdf
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=marching_cubes_jgt.pdf
http://www.eas.asu.edu/~csedept/people/faculty/nielson.html
http://graphics.cs.ucdavis.edu/~hamann
http://graphics.cs.ucdavis.edu/~hamann/NielsonHamann1991.pdf
http://graphics.cs.ucdavis.edu/~hamann/NielsonHamann1991.pdf
http://www.unchainedgeometry.com/jbloom/
http://www.unchainedgeometry.com/jbloom/papers/eval-tilers.pdf
http://www.unchainedgeometry.com/jbloom/papers/eval-tilers.pdf
http://www.sibgrapi.ufam.edu.br
http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2006.40

	Introduction
	Related work
	Numerical tools
	Robust adaptive polygonisation
	Building the octree
	From octree to dual grid
	Mesh generation

	Results
	Conclusion
	Bibliography

